
AD-A097 273 MARYLAND UNIV COLLEGE PARK DEPT OF COMPUTER SCIENCE F/6 9/2

THE OPERATIONAL APPROACH TO REQUIREMENTS SPECIFICATION FOR EMBE--ETC(U)

DEC 80 P ZAVE AFOSR-TT-3181

UNCLASSIFIED TR-976 AFOSR-TR-81-0322 NL":'IIEIIIIbEIhII
hEEEhEhhEEEEEEElllEEllE
EIIIIIIEIIIII1
EEIIIIIEEEEEEEE
El'..'.IIII

HI3 2'7- 2.2~
jj111112.0
IN H~ .

1I25 1.

~~UNCLASIFIED .•
SECURITY CLASSIFICATION OF THIS PAGE (When DeI. Entered) HJ0

REORT REPO UMENTATION PAGE , READ 1'STRUCTIONS
, ENTATION PAGEFORF C'OMiPIF11NG FORM •l

R.REPoRT"UMBER . GOVT ACCESSION NO. 3 RECIPIENT'S ATALOG NUMBER

A1R TR. 8_1_-__
.. S. TYPE OF REPORT & PERIOD COVERED

(l , ii'EX.~N EMBEDDED.ST6 PERFORMING ORG. REPORT NUMBER

AUTHORs.) -W -C -NTRACT OR G-XNT NUMBER"s

am ave - AFRSR-77-3181 v

9. PERFORMING ORGANIZATION NAME-A-RNO ADK-S& 10 PROGWAM ELtMENT. PROJECT TASK<
AREA& WOR K UNIT NUMeERS

Department of Computer Sciencas- -,.
University of Maryland 01

C ole Park M 20742 ________________

11. CONTROLLING OFFICE NAME AND A E . .. "4 - 4.i-GR-o"ATE

Air Force Office of Scientific Research/NM lrcZ 6vA' 5
Bolling AFB DC 20332 13. NUMBERGES

.MO0NITORIHG AGEN4CY bLAME & ADOR"!SSMf dtf ert from Cntrallini Office) I5. SECURT~yC CASS 'o.

rqjUNCLASSI FIED
IS-. OECL ASIIAI OCA NGA

Ili. SCHEDuLE
IS. DI5-T-RIBUTION STATEMENT (of this Report) DTIC
Approved for public release; distribution unlimited.c

SAPR 2 1981

17. "*ISTRIBUTION STATEMENT (of the abstract entered In Block 20, if differpnt I.rm Report) 1 -

B {

18 SUPPLEMENTARY NOTES

19. KEY WORDS fCorlrlnue on reverse vide if nera .- ri and idertity btt lock rniter)

Requirements analysis and specification, embedded (real-time) systems, system
design and specification, simulation models, distributed processing,
applicative programming.

,

.~-~? Ahis paper is a self-contained and comprehensive presentation of the "opera-
tional" approach to requirements specification for embedded systems, which is

Lai based on the concept of specifying requirements as an executable model of the
-j proposed system interacting with its environment. It is argued that urgent

performance requirements characterize embedded systems, and a fornmal treatment -..._
of performance is given. The language is process-oriented so that the
parallelism inherent in embedded system requirements can be expressed directly.
Motivation and examples are emphasized throuahout.-

JAN 73 1473 UNCLASSIFIED'

.4,SECURITY CLASSIFICTlON 0
r

flis PAC.- ,Ii%,n ttaii I ,t.,

"P ' " "" -" " .. . " I' " " - : : '" ' " : ' ' .. ' " ',. '. . "

4 AFOSR-TR. 8 1 - 0 3 2 2

TR-976 December 1980

THE OPERATIONAL APPROACH

TO REQUIREMENTS SPECIFICATION

FOR EMBEDDED SYSTEMS*

Pamela Zave

Abstract This paper is a self-contained and comprehensive presentation of
the operational" approach to requirements specification for embedded systems,
which is based on the concept of specifying requirements as an executable
model of the proposed system interacting with fts environment. It is argued
that urgent performance requirements characterize embedded systems, and a
formal treatment of performance is given. The language is process-oriented so
that the parallelism inherent in embedded system requirements can be expressed
directly. Motivation and examples are emphasized throughout.

Keywords requirements analysis and specification embedded (real-time)
systems,-system design and specification, simulation models, distrihuted
processing, applicative programming

*This research was sponsored in part by the Air Force Office ')f
Scientific Research (AFOSK-77-31811). Computer time was provided by the
Computer Science Center, University of Maryland.81 4 2 037

Approved for publilO release;distribution unlimited.'

TABLE OF CONTENTS

0. INTRODUCTION I

1. THE REQUIREMENTS PROBLEM 2

2. EMBEDDED SYSTEMS.... 6

3. AN "OPERATIONAL" APPRCACH 11

4. QUALMS ABOUT OPERATIONAL REQUIREMENTS..................23

5. TIP. PAISLEY LANGUAGE...........................31

6. INTERIM EVALUATION

7. PLANS FOR FUTURE RESEARCH. 51

8. CONCLUSION. 5

ACKNOWLEDGMENTS.. 54

REFERENCES 54

APPENDIX: A GRAMMAR FOR PAISLEY 58

FOOTNOTES.. 62

FIGURES 63

Aecr7iton ror

L .El

Av'.:. L~it Codes
; ,1;d/or

Di:t , p_.K al

AIR FORCE OFFICM OF SCIEWIFIC R3SI CMj (AlsC)
NOTICE OF TRFA!N3MITTAL TO DDC
This techniul rtVrt har bein reviewed and in
aPproved 1'0 p "" f',-eEse lAW AR 190-12 (Tb).
Dlstribtaton is utlirited.
A. D. BLOSE
Tchnical Information Offier

THE OPERATIONAL APPROACH

TO REQUIREMENTS SPECIFICATION

FOR EMBEDDED SYSTEMS

0. INTRODUCTION

Recently the study of system requirements has emerged as a major area of

research in software engineering. It has become clear that the stated

requirements for a system have tremendous impact on the quality and usefulness

of the ultimate product, and on the efficiency and manageability of its

development. Yet, despite their leverage, relatively little is known about

deriving and specifying good sets of requirements.

At the same time, the prominence of "embedded" (roughly equivalent to

"real-time") systems has been increasing, due largely to hardware advances

which have made them feasible for a broader category of applications than ever

before. We will argue that embedded systems are characterized by the urgency

of their performance requirements; to the extent that all computer systems

would benefit from the ability to state and satisfy performance requirements,

even very specialized knowledge about embedded systems can be useful to

developers of other types of system.

This paper presents a new approach to the problem of specifying the

requirements for embedded systems. It offers a substantial increase in

formality, expressive power, and usefulness (in terms of the kinds of

processing that can be performed on, and the information that can be derived

from, a requirements specification) over the current widely known requirements

technologies.

This paper is self-contained. We give brief introductions to the

subjects of requirements and embedded systems, explain and motivate our

approach in detail, and then present a formal requirements language embodying

it. Four systems, comprising a representative sample of embedded system

structures and properties, are used in examples throughout. Finally there is

an interim evaluation of the approach, and plans for future research.

2

1. THE REQUIREMENTS PROBLEM

1.1. The role of requirements in the system life cycle

The development of a computer system begins with the perception of a need

for it. During the requirements phase, analysts should arrive at a deep

understanding of that need, and propose a system to fill it. The product of

the requirements phase is the requirements specification, which plays a unique

and crucial role in the rest of development. It states what system is to be

developed, at what costs, and under what constraints.

The project cannot be a complete success unless the requirements have the

informed consent of everyone who will be involved, including members of the

development organization (designers, programmers, and managers), the

originating organization (the people who determine the cost and.value of the

system: managers of an operation--if the system is being developed for

internal use, or salespeople--if the system will be offered as a product), and

the ultimate users of the system. This consensus can only be achieved through

feedback and negotiation, with preliminary versions of the requirements

specification being the major vehicle of communication.

During design and implementation, the requirements specification defines

the "top" for top-down design, and the product toward which management effort

is aimed. At the end of development, it is the standard against which the

system is compared for success or failure, acceptance or rejection.

Requirements are often neglected, for reasons that are all too familiar:

lack of awareness of their importance (which is disappearing), lack of useful

requirements analysis and specification techniques, and natural reluctance to

incur costs and delays at the beginning of a project. Yet the consequences of

this shortsightedness, which include cancelled projects or unprofitable

products, unhappy users, chaotically structured systems, budget and schedule

overruns as endless changes are made, and even lawsuits, are so serious thit

no one Involved in software engineering can afford to ignore them. Other

introductions to the role of requirements in system development can be found

in (Boehm 76], [Bell & Thayer 76], (Ross & Schoman 77], [Yeh et al. 80],

(Heninger 79], [Balzer & Goldman 79], and (Davis & Rauscher 79].

It should be noted that even with the most optimistic view of current

3

progress on requirements analysis and specification, in which problems of

communication and complexity can be solved, certain other problems will remain

very difficult to deal with. One is that vital decisions must be based on

forecasts of costs and even feasibility, while such forecasting is perhaps the

weakest point of our software technology. Another is that the requirements

are constantly changing, even as we try to write them down. And systems that

are used evolve continually throughout their lifetimes ((Belady & Lehman 79]),

creating "maintenance" costs which may eventually dwarf those of initial

development.

As consciousness of the economic and technical importance of evolution in

the system life cycle grows, we may develop a new concept of the life cycle

based on iterated (re)developments, large and small, as in [Conn 80]. In such

a model, the requirements specification will evolve with the system, serving

throughout its life as definition, documentation, and contract. Needless to

say, this expanded role will place even greater demands on the quality and

modifiability of our requirements specifications.

1.2. Goals for requirements specifications

Progress in software engineering has almost always been made from the

bottom up: from machine language to axiomatic specifications, for example, we

have proceeded first by learning to do something, and then by understanding it

well enough to find suitable abstractions of it. This paper takes the sane

approach to requirements. It seems unlikely that we will find really

effective techniques for requirements analysis before we know how to write a

good requirements specification recording the results of that analysis.

Therefore we will concentrate on specification techniques (although useful

results on specification cannot help but suggest analytic methods and

principles).

The characteristics of a good requirements specification can be inferred

from the things that will be done with It. Since the latest version (to call

it a "final" version is to ignore the reality of system evolution) must be

obtained by iterative communication and negotiation, the specification must be

modifiable. It must also be easy for people to understand.

What would make a specification understandable? Perhaps the biggest

barrier to understanding large systems is complexity, and so the specification

must decompose complexity in every appropriate way. Three forms of

4

decomposition are already familiar In various contexts: abstraction,

partition, and projection (Figure I). Abstracton forms a hirarchy of

representations in which detail is suppressed at the higher levels and

elaborated at the lower levels. Partition is used to represent the whole as

the sum of its parts, making it possible to examine the parts one at a time.

Projection represents the whole, but only with respect to a subset of its

properties. The obvious example of a projection is a two-dimensional

architectural drawing of one view of a three-dimensional building. A

requirements specification language must support all three kinds of

decomposition, alone and in combination.

Good decomposition of complexity (procedures, data modules, monitors,

etc.) makes it possible to understand programs by reading them. The other way

that people come to understand programs is by testing then. Testing is so

essential to programming that it seems foolish to do without it at any stage

of development. Therefore requirements specifications should be executable,

and thus subject to validation by testing. The potential benefits are very

great, because executable requirements can be "debugged", used to put on

behavioral demonstrations for customers, turned into "fast prototypes", and

more (see 3.3).

Finally, a specification intended to be understood by people should be

intuitive, i.e. it should be written so as to assist the menory and elicit

tacit knowledge (see the "human factors" section of [Yeh et el. 801 for a

survey of psychological findings concerning requirements).

The other major purpose for which a r4!quirements specification is used is

constraining the target system of the development project. To do this well it

should be precise, unambiguous, internally consistent, and sufficiently

complete. It should also be minimal, i.e., define the smallest set of

properties that will satisfy the users and originators. Otherwise the

specification may over-constrain the target system, so that some of the best

solutions to design problems are unnecessarily excluded.

The specification nust also he used to accept or rejert the final

product. If verification is to be used for this purpose, the specification

must be formally manipulable and therefore formal (although formality has

already been implied by precision, lack of ambiguity, consistency, and

executability). If acceptance testing is to be used, the testable behavior of

executable requirements will provide a concrete standard to which the

5

implementation can he compared.

The remainder of this paper is concerned with a requirements

specification approach (and language) that promises to help us achieve many of

these goals. It is also somewhat specialized for a particular class of

systems, namely . . .

6

2. EMBEDDED SYSTEMS

Common examples of embedded systems are industrial process-control

systems, flight-guidance systems, switching systems, patient-monitoring

systems, radar tracking systems, ballistic-missile-defense systems, and

data-collection systems for experimental equipment. The class of enbedded

systems is an important one, partly because it already includes some of our

oldest and most complex computer applications, and partly because it is

expanding rapidly in volume and variety as a result of the microprocessor

revolution.

2.1. What makes a system "embedded"?

The term "embedded" was coined by the U.S. Department of Defense in

conjunction with its common language (Ada) development project. "Embedded"

refers to the fact that these systems are embedded in larger systems whose

primary purposes are not computation, but this is actually true of any useful

computer system. A payroll program, for instance, is an essential part of a

business organization, which is a system whose primary purpose is selling

products at a profit.

The common concept that unites the systems we choose to call "embedded"

is process control: providing continual feedback to an unintelligent

environment. This "theme" is easily recognized in !iight-guidance systems inl

switching systems; even in a patient-monitoring system, sick patient5 are not

exercising their intelligence in interacting with the system, and nurses can

be viewed as providing a mechanical extension to the system's feedback loop.

The continual demands of an unintelligent environment cause these systems

to have relatively rigid and important performance requirements, such as

real-time response requirements and "fail-safe" reliability requirements. It

seems that this emphasis on performance requirements Is what really

characterizes embedded systems, and causes us to be more aware of their

environments than we are for other types of system.*

Figure 2 shows an informal classification of systems, based on properties

that show up at the requirements level. Requirements for "support gystems"

are generally much less definite than requirements for applications systems.

7

And while the performance requirements for embedded systems may be couched in

absolutes, the performance requirements for support systems will be relative

to resources and resource utilization, and the performance requirements for

data-processing systems will be relative to load, resources, and psychological

factors. The most complex systems, such as nationwide airline-reservation

systems, should probably be viewed as having subsystems of all three types.

2.2. The special problems of embedded systems

The special nature of embedded systems exacerbates many software

engineering problems, and thus demands particular attention even during the

requirements phase.

Few organizations have logged as much experience with embedded systems as

the Department of Defense, which spends 56 per cent of its approximately 3

billion dollar annual software budget on them ([Fisher 78]). Here is a

pointed summary of that experience:

Embedded computer software often exhibits characteristics that are
strikingly different from those of other computer applications. The
programs are frequently large (50,000 to 100,000 lines of code) and
long-lived (10 to 15 years). Personnel turnover is .rapid, typically
two years. Outputs are not just data but also control signals.
Change is continuous because of evolving system requirements--annual
revisions are often of the same magnitude as the original
development ([Fisher 78]).

Clearly coping with complexity and change will not be easier in the domain of

embedded systems.

In addition to the performance requirements, which have alrpeiv bo.-n

established as a major distinguishing factor, embedded systems are especiAlly

likely to have stringent resource requirements. These are requirements on the

resources, mainly physical in this case, from which the system is constructed.

This is because embedded systems are often installed in places (such as

satellites) where their weight, volume, or power consumption must be limited,

or where temperature, humidity, pressure, and other factors cannot be as

carefully controlled as in the traditional machine room.

The interface between an embedded system and its environment tends to he

complex, asynchronous, highly parallel, and distributed. This is another

direct result of the "process control" concept, because the environment is

likely to consist of a number of objects which interact with the system and

each other in asynchronous parallel. Furthermore, it is probably the

complexity of the environment that necessitates computer support in the first

place (consider an air-traffic-control system)! This characteristic makes the

requirements difficult to specify in a way that is both precise and

comprehensible.

Finally, embedded systems can be extraordinarily hard to test. The

complexity of the system/environment interface is one obstacle, and the fact

that these programs often cannot be tested in their operational environments

is another. It is not feasible to test flight-guidance software by flying

with it, nor to test ballistic-missile-defense software under battle

conditions.

2.3. Representative examples of embedded systems

The following systems, when developed appropriately, represent a wide

variety of structures and problems typical of embedded systems. They will be

used in examples throughout the paper.

2.3.1. An airline-reservation system

This is an on-line (interactive) database system used for airline

reservations. It is accessed from 10,000 terminals across the country, ani

must process an average of 200 transactions per second (these and other

quantities are taken from (Knight 72J).

Systems of this type are not always treated as embedded--rather, their

data-processing nature is emphasized, and the users are expected to accomodate

themselves to whatever level of performance the system offers. We emphasize

its embedded-system characteristics by requiring certain absolute levels of

performance, and by taking the physical effects of geographical dispersion

into account at the requirements level.

2.3.2. A process-control system

This system monitors three machines in a factory; while fairly simple, it

has an interesting variety of activities. A relatively complete specificatin

of it can be found in [Zave & Yeh 81].

Conditions local to individual machines may call for minor adjustments,

which are done automatically by the system. Conditions arising in the factory

as a whole, however, may be quite dangerous, and are responded to by a human

operator. The system's responsibility is to detect these conditions and sound

9

an alarm.

The system also keeps information about factory conditions, which is used

for two purposes: printing reports on production and consumption of raw

materials, and answering queries about machine and factory status from the

operator (particularly when the alarm has sounded).

2.3.3. A patient-monitoring system

Patient-monitoring systems are often used as examples in the requirements

literature, although the usual treatment is naive. (Primarily, only the

data-oriented aspects of the system are considered.) The system reads sensors

attached to patients in an intensive-care unit of a hospital. The system

displays a warning message on a CRT screen if a sensor value falls outside of

a safe range or if a sensor appears to be malfunctioning. Interesting sensor

values are stored in a database which can be queried from the terminal. The

frequency with which a sensor is read, the safe range for a sensor value, and

the criteria for keeping readings in the database, can all be adjusted by

doctors and nurses from the terminal.

2.3.4. The Air Force Weapons Effectiveness Testing (AF'WET) system

This system (ultimately realized under the name "wTE) .as an early

real-time system which suported quantitative testing of U.S. miiitarY

(conventional warfare) capability (see Figure 3). Its requirements document

((Air Force 651) is a fruitful source of bad examples and unsolved

requirements problems.

Tests were military exercises involving -test elements" such as

airplanes, ships, tanks, and ground defense positions (some playing the role

of enemy forces), confined to a circle centered on Eglin Air Force Base in

Florida. Test elements communicated with a central site throug*. -litary

standard radio equipment, plus a contractor-supplied communications network.

During a test, moving elements would send periodic notifications of their

positions to the central site. Mock firings of weapons would also cause

messages to be sent, supplying all relevant parameters such as the direction

of aim. The central system would simulate the battle in real time,

determining which of the mock firings would have resulted in "'kills". The

results of the simulation were (a) used to display the course of the battle on

graphics scopes for the benefit of officers in a control room, (b) dumped onto

archival storage for later analysis, and (c) used to send "kill" notifications

to "killed" test elements in the field. They would then react with a flashing

light or loud noise, and cease to participate in the battle.

I

3. AN "OPERATIONAL" APPROACH

The approach taken in this paper is to specify the requirements for an

embedded system with an explicit model of the proposed system interacting with

an explicit model of the system's environment. Both submodels consist of sets

of asynchronously interacting digital processes, although some of the

processes in the environment model may represent discrete simulations of

nondigital objects such as people or machines. The entire model is

executable, and the internal computations of the processes are specified in an

applicative language.

We call this the "operational" approach because the emphasis on

constructing an operating model of the system functioning in its environment

provides its primary flavor. It has been embodied in a Specification Language

which, since it is based on the ideas above and is therefore Process-oriented,

Applicative, and Interpretable (executable), is named PAISLey.

In the remainder of this section, the basic ideas behind the operational

approach will be explained, illustrated, and justified in detail. Section 4

addresses the apparent disadvantages of the operational approach, and Section

5 defines PAISLey.

3.1. Explicit modeling of the environment

Figure 4 is a diagram of the processes and interactions in part of the

requirements model for a patient-monitoring system. The "oatient", "nurse",

and "doctor" processes are all digital simulations of these natural objects,

representing (obviously) only the roles played by these people with respect to

patient-monitoring. Thus the nurse's behavior includes only (a) treating a

patient because of a warning from the system, (b) adjusting .a sensor because

of a warning from the system, and (c) interacting with the system (via the

"crt-terminal" process) in any way requested of him during interactions with i

doctor.

The "sensor" and "crt-terminal" processes represent analog-to-digital

conversion devices. They are considered parts of the environment rather than

the proposed system simply because they are "given": the contractor need not

supply them, nor can he change what they are.

..b m.. .n| ili I . .. I

The "reader" process reads (and tfme:itaimpn) sensor data at intervals o f

real time specified from the terminal. The "monitor" process checks the data

according to criteria specified from the terminal, sending warning messages if

a health factor falls outside the safe range, or if a sensor seems to be

malfunctioning. It also sends sufficiently interesting data to the "database"

process, which responds to queries from the terminal and also purges old data

to maintain itself at a reasonable size.

Including an explicit model of the environment has several advantages for

requirements specification. The reason that the interface between an embedded

system and its environment is complex, asynchronous, highly parallel, and

distributed is that it consists of interactions among a number of objects

which exist in parallel, at different places, and are not synchronized with

one another. Organizing these interactions around the objects (processes)

which take part in them is an effective way to decompose this sort of

complexity. Furthermore, assumptions and expectations on both sides of the

boundary can be documented. The result is a specification which is far more

precise and yet comprehensible than could be obtained by treating either side

of the interface as a "black box", which is what happens when the environment

is not modeled.

Another reason for having an environment model is that the environme t

(when construed broadly enough) is the source of all changes to the system.

Modeling it is therefore a promising way to anticipate changes and enhance the

modifiability of both specification and target system.

A simple, but not unimportant, example of this has to do with t V

environment/system boundary. After requirements for a patient-monitoring

system along the lines of Figure 4 have been specified, it may be decided that

the contractor should supply terminals and sensors after all. The change to

the specification itself will be trivial, since the boundary is arbitrarily

placed, and not really part of the executable model. More importantly, most

of the "new" analysis work will have already been done: the analysts will

understand fully (i.e. from both sides) the function of this equipment, and

will probably be very aware of any shortcomings that should he corrected, now

that the freedom exists to do so.

The final advantage of specifying the environment is that many

performance constraints are most naturally attached there. The

patient-monitoring system has (among others) response-tine requirements on

13

database queries, and a requirement to be able to handle a certain load of

sensors and terminals. The response requirement is most directly expressed ns

a time limit on the component of the terminal specification which waits for

the response after sending a query. The load is largely a function of the

numbers and output rates of sensors and terminals, and so specifications of

sensors and terminals must be a large part of specifying any load requirement.

The other significant aspect of constructing an environment model is that

it is a valuable tool for requirements analysis, as well as specification. in

fact, the best way to analyze requirements may be to start with the

environment model, and work "outside-in" to a proposed system which supports a

desirable mode of operation in the environment. The extreme case is

automation of an existing manual system--in the absence of changes to exist inr

procedures, the requirements can be derived simply by modeling the current

operation, and drawing a boundary to distinguish the automatable part! [Yeh

et al. 79a] and [Yeh et al. 79b] both discuss "conceptual models", which are

models of system environments constructed for the purpose of requirements

analysis.

In the patient-monitoring system, since only the sensor" and

"crt-terminal" processes interact directly with the proposed computer systen,

only these are necessary for precise specification of the system interface.

The "patient", "nurse", and "doctor" processes appear strictly as vehicles for

requirements- analysis. Wondering how doctors and nurses interact leads tie

analyst to ask which kinds of information a doctor expects to get fron i nurse

on duty, and which kinds he would like to find in the database. '4ondering hew

nurses interact with patients and the display leads the analyst to ask how ti'e

display screen should be allocated to medical histories versus emergencv

messages, how often warnings concerning an ongoing crisis need be displ3yed,

and whether information from the monitoring system is needed at the patient's

bedside. These questions are never asked (or answered) In the numerous

treatments of patient-monitoring systems appearing in the reqziirerents

literature.

Even if the analysts can achieve understanding of the requirements in

some other way, early concentration on the environment may lead to better

communication with users (who are much more interested In their environment

than your system), and more open-minded problem-solving, unbiased bv

preconceived notions or similar systems the analysts have worked on.

3.2. Processes

Another key feature of the operational approach is that the primary units

of specification are processes. A process is a ;Imple, abstract

representation of autonomous (distrihuted) digital cooplarAtion. It 1,;

specified by supplying a "state space", or set of all possible states, and a

"successor function"** on that state space which defines the successor state

for each state. It goes through an infinite sequence of states (although a

"halting" process can be specified by having it go into a distinguished

"halted" state which it will never leave), asynchronously with respect to all

other processes (Figure 5).

A process is cyclic, with its successor function describing its natural

cycle. The natural cycle of a process simulating a sick patient, for

instance, would be a single step of the discrete simulation algorithm. The

successor function of such a process might be declared as:

patient-cycle: PATIENT-STATE --> PATIENT-STATE,

where the set "PATIENT-STATE", which is its domain and range and also tIe

state space of the process, contains values encoding possible st.ates of the

patient between simulation steps. The natural cycle of the ".octor' process

might be to take one action, either asking one question of a nurse, vinp ,le

order to a nurse, or taking part in one transac-tion .ith the-

patient-monitoring system.

There can be no question about the fenerality of processes. They wero

originally used as abstractions of concurrent .ictivitI o t:it h

multiprogramming systems ((lHorning & Randell 731), and .:iny recent artic'.-

have shown that they can be used to represent ',I/ devices, daLa nodules,

tasks, monitors, buffers, or any other identifiable structure w.thin .

computer system (e.g. (Hoare 78J, (Brinch Hansen 781, t1ao & Yeh 80').

Process-based models of computation have been the focus of extensive

theoretical work and the language Smalltalk ([ingalls 781). nur varied

examples are persuasive evidence that the notion of digital AImntiition of

nondigital objects is similarly powerful in describing the environment- of

computer systems.

The appropriateness of using processes to specify requirements for

embedded systems is based on our observation that in these lystem,

asynchronous parallelism--among environment objects, between onvirnnnent

objects and the system, and within the system (if only for reasons of

15

performance)--occurs naturally at the requirements level. One happy result of

recognizing that parallelism, by using processes as the specification unit, is

environment specifications which should be highly intuitive, even to naive

users. This is because they are populated by identifiable models of the same

autonomous, interacting objects from which the real world is made.

Perhaps the best way to appreciate processes is to consider the

alternatives: representations of processing found in other requirements

languages. The one most- commonly found in requirements documents is

"dataflow". Dataflow diagrams show major system functions, and identify the

data structures which are their inputs and outputs (e.g. Figure 6). Dataflow

Is the basis of PSL/PSA ([Teichroew & Hershey 77]) and SADT ([Russ 77], [Ross

6 Schoman 77]), and has probably been rediscovered thousands of times by

isolated requirements-writers.

Dartflow may be adequate for many data-processing systems, such as tile

one depicted in Figure 6. T is is because major subfunctions

("check-inventory", "send-Invoice") are implemented as major subprograms, and

subprograms are invoked in some implicitly understood sequence, whenever their

input files are ready.

Dataflow is seriously inadequate for embedded systems, however, because

control is all-important in embedded systems, and takes a variety of forms

which are not captured by the simplistic notion of control implicit in

dataflow. If the system in Figure 6 had the "on-line" character and

performance requirements of an embedded system, here are sone of the nroblems

we right encounter with the dataflow approach: (1) A distinction must be made

between Inputs which are always present (such as the "I 'NTORY" daahbase) and

inputs which invoke a function whenever a new instance appears (such as

"PURCHASE-ORDER"). The situation is even more compl-c when there Is an input

value (such as the current output of a sensor attached to a hospital patient)

which is always available, but only read at certain real-time intervals (and

the interval itself is a variable stored in some system database). k2)

Functions (such as "process-account-order" and "process-payment") m.v have to

be executed concurrently to meet performance requirements, in which case they

must synchronize their uses of shared resources or databases (such as

"ACCOUNTS"). (3) Functions may no longer execute In a predefined sequence

(because of simultaneous access from multiple terminals, the need for internal

housekeeping, etc.), and so a complex interplay of events and states mu.t he

anticipated. With so many departures fromt the kind of information directly

expressable in a dataflow diagram, it becomes less and less likely that

dataflow can provide a meaningful characterization of the system.

The control arrow in SADT adds an explicit representation of control to

dataflow diagrams (an illuminating discussion of its significance can be found

in (Ross 771), but its informality prevents it from being precise or

expressive enough for embedded systems. Processes and their interactions, on

the other hand, are well-suited to the task of specifying complex control, as

would be expected from their historical origins in the specification of

operating systems.

Other notions of control appearing in requirements languales are

stimulus-response paths in RSL ([Bell et al. 771, (Alford 77;, [Davis & Vick

771) and finite state machines ([Heninger 79], (Davis & Rauscher 79]). A

finite state machine is very much like a single process--better than dataflow,

perhaps, but permitting no explicit parallelism, decomposition of complexity,

nor modeling of the environment.

Stimulus-response paths (e.g. Figure 7) do make it possible to decompose

the requirements and represent parallelism. The "R-net" in Figure 7 shows

explicit parallelism between "STORE FACTOR DATA" and "EXAMINE FACTORS", and is

only one of several R-nets specifying the entire system. They do not,

however, provide for representation of data, the interaction of paths viai

data, or internal synchronization around shared data. Because the proce,;;

mechanism integrates data and processing, it is a more complete formalism, anti

therefore more likely to be able to cope with a variety of systems .v:

situations.

3.3. Executability

In the operational approach, requirements specifications are executable.

This means that, under interpretation, the specification becomes a simulation

model generating behaviors of the specified system.

It is of vital importance to be able to interpret specifications

regardless of their level of abstraction. Not only are requirements by their

nature abstract in many respects, but they must also be develiped by

successive refinements of understanding, each version of which should benefit

from this facility. We will defer until 3.4 a discussion of how this can he

done, and only deal here with the advantages of doing so.

17

Executable specifications can be tested. As mentioned in 1.2, this means

that they can be debugged by the analysts who write them, and then validated

by originators/users in demonstrations. Note that this capability includes a

"fast prototyping" facility, which is now being mentioned by many authors as a

valuable engineering tool ((Conn 80]), because the specification can be

developed to whatever level of detail is appropriate for a prototype and then

made available for use by a small community via the interpreter.

The ability to test is no panacea, as must be obvious from the literature

on program testing--testing cannot demonstrate the absence of errors, it is

not always easy to get the right kind of output from a test, and it is

difficult to draw any general conclusions about a program on the basis of

tests. And with embedded system specifications, there is the additional

complication that any test must choose one of many relative-rate-dependent

process execution sequences. Nevertheless, the problems inherent in testing

programs have never caused us to give up testing them, and it seems plausible

that requirements testing, once established in common practice, would seem

likewise indispensable.

Furthermore, an executable requirements model can continue to he usefuf L

after the requirements phase. The environment part of the model can be used

as a test bed during system development, which will be particularly valuable

for embedded systems because of the aforementioned difficulties of testin<

them "in the field" (in fact, it is almost always necessary to write an

environment simulator for exactly this purpose). The model of the propos.d

system can be used to generate sample behaviors for acceptance testino.

It is also possible to attach performance constraints in such a way thit

they can be simulated along with the functional requirements, 3nd this is done

in PAISLey. Simulation can then be used to predict performance where it is

too complex to determine analytically. This type of simulation is an

important feature of SREM, the integrated set of tools by which RSL is

supported.

There is a final, critically important, advantage of execuithilitv that

has nothing to do with testing or simulation. It is that the demands of

executability impose a coherence and discipline--because the parts of' a

specification must "fit together" in a very strong sense--that could scarcely

be obtained in any other way. If an executable requirements specification is

shown to be internally consistent, that means it will continue ti generate

behaviors without ever halting, deadlocking, or going into an undefined state.

In other words, it is guaranteed to be a valid specification of some system

interacting with some environment. Clearly this is the utmost that any

formally defined notion of internal consistency could do, for u, s inc,

deciding whether they are the right system and environment is a matter of

validation by the originator/user, or verification of consistency with

externally defined axioms of correctness.

3.4. Specification in an applicative language

Within a process, computation (i.e. the successor function of the

process) is specified using a purely applicative language. "Applicative" (or

"functional") languages are those based on side-effect-free evaluation of

expressions formed from constants, formal parameters, functions, and

functional operators ("combining forms" for functions, such as composition).

Well-known examples of applicative languages are the lambda calculus, pure

LISP, and the functional programming systems of [Backus 78].

3.4.1. Advantages of applicative languages

Applicative languages are currently receiving a great deal of favorable

attention because of their numerous theoretical and practical advantages

([Backus 78], [Iverson 80], (Smoliar 80], (Friedman & Wise 771, (Friedran &

Wise 78aJ, fFriedman & Wise 78b], [Friedman & Wise 79], (Friedman & '¢ise 80],

among others), most of which can be exploited in requirement; specifications.

To begin with, because applicative languages are interpretable, they support

the executability property: processes are executed by repeatedly replacing

their current states by successor states, and successor states are discovered

by interpreting the applicative expressions which define them.

For purposes of high-level specification, the most important property of

applicative languages is their tremendous powers of abstraction, i.e. of

decision deferment. Consider, for instance, the functional expression

"f[(gjyJ,hjz])J], which says that the function -g" is to be applied to the

argument "y" and "h" is to be applied to "z" (the "* I" s:,mbols dpnote

function application or composition), and then f" is to he applied to their

values (the "()" symbols are used to construct tuples of data). But It does-

not constrain the data, control, processor, or other resource structures used

to do so. Are "g[y]" and "h[z[" evaluated sequentially or in parallel? In

what data structures are their values stored? Perhaps the argurents "v" and
"z" are even shipped off to special "g"- and "h"-processors, respectively, at

different nodes of a network!

Furthermore, a primitive function has several interesting

interpretations, all of which enable additional decompositions of complexity.

A primitive function can represent a set of deferred decisions, to be .ade

later by defining the function in terms of simpler primitives. It can also

represent a mapping which will always remain nondeterministic from the

perspective of the requirements model, because it depends on factors out!-1e

the scope of the model. For instance, in specifying a terminal we ;aight

declare a primitive function

think: DISPLAY -- > INPUT,

where "DISPLAY" is the set of all CRT screen images and "[r.PUT" is the set of

all input lines, to represent the human user's thought processes. Finally, in

PAISLey a primitive function can be an abstraction for an asynchronous proceqs

interaction (see below). Because of these many options, applicative l&nguages

have been used successfully to describe phenomena ranging in level)f

abstraction from digital hardware to distrihuted system requirements

([Fitzwater & Zave 77], [Smoliar 79]).

An interpreter for an abstract specification language makes expedient snj

non-functionally-significant decisions about such matters as control and space

allocation. The only other thing needed for interpretation is sone sort of

implementation of functions and sets left primitive in the abst ra,- t

specification. This can be done in many ways, perhaps the -implPst of which

is: (1) any evaluation of a primitive function whose range is not primitiv,

yields either a randomly chosen, or a "smallest", element of the range; (2)

any primitive set is temporarily defined to be the set "FIL.FR", whose oi'y

element is the constant "'null" (thus any evaluation of a primitive functtol

whose range is primitive necessarily yields "nul"). "nul is iften, ,lsd

as a place-holder where a value must be generated hit no z onantIc!- need 'e

carried. Another way to interpret primitive functions Is to display their

arguments at a terminal and ask the analyst to supply a v;lue, therehy

creating an interactive testing system. In either case, the effect is to

simulate the decisions which have been made, without Interference iron the

decisions that haven't been made.

10

Another advantage of applicative languages is that they are extremelv

convenient for formal manipulations such as verification. This is because an

expression has "referential transparency", i.e. its only semantic property is

its value. An applicative program can sometimes be proven consistent with an

axiomatic specification of correctness, for example, merely by algebraic

substitution! This facility is one of the major subjects of (Backus 78].

One advantage of applicative languages that will not be exploited for

specifications of embedded systems is that as programming languages,

applicative languages may have more potential for efficient implementation

than procedural ones. Because the "von Neumann bottleneck" of accessing ano

referring to memory one word at a time has been eluded ([Backus 781), the

field is clear for high-powered optimization by interpreter writers and

machine designers. The work of Friedman and Wise on large-scale

multiprocessing ((Friedman & Wise 7 8a]) and research on dataflow computers are

both efforts in this direction; neither form of parallelism requires the

knowledge or participation of the programmer.

Embedded systems do not profit directly because they may have

performance, accessibility, distribution, etc. requirements which can only be

simulated (but never realized) by an interpreter running on a conventional

shared computer system, even though that interpreter might provide a

convenient and efficient implementation for other types of system. For

embedded systems, interpretable specifications are clearly; distingkuishabie

from implementations by their performance and resource prorerties, despite

functional equivalence.

3.4.2. PAISLey as an applicative language

PAISLey is not a purely applicative language because states in general,

and process states in particular, are not applicative co,,cepts. System

specifications can be written in a purely applicative notation, as In [Smoliar

79] and (Friedman & Wise 791. In [Zave 80a] it is explained that, while miny

aspects of even embedded systems can be specified applicatively, the

specifi'ation of most performance requirements, real-time interfaces with the

environment, and certain resource requirements, all necessitate the

introduction of some non-applicative structure such as processes.

Furthermore, processes may offer a helpful form of decomposition of complexity

not available in purely applicative languages when feedback loops are present.

This will be particularly important with our requirements specifications for

embedded systems, in which representation of the feedback provided by the

proposed system to the environment is a primary objective.

Since PAISLey is a blend of the applicative world and the non-applicative

world of processes and states, the "seam" must be a smooth one. The t-'wo

worlds meet at the mechanism for interprocess interaction, which is

necessitated by the existence of processes, but designed to fit smoothly into

the applicative framework. Interactions take place through a set of three

primitives called "exchange functions" which carry out the side-effect of

asynchronous interaction, but look and behave locally (intraprocess) exact:y

like primitive functions. Exchange functions are defined and explained in

5.3. They are a unique mechanism which seems to fulfill our purposes 7ery

well, and also offer an interesting new perspective on asynchr:nous

interaction mechanisms for distributed processes.

Applicative languages have a reputation for unreadability, and genpr;il

unsuitability for large-scale software engineerinR, in soro circlos. We

believe that this reputation is due to typelessness and recursion, neither one

of which is present in PAISLey.

Recursion is what purely applicative languages use to specify re.etitive

computation, and is analogous to looping (iteration) in procedural langua.es.

Both are analogous to the repetitive application of a successrr function to

produce successive process states, which is how 'inboundtd repetition I

specified in PAISLey.

In most applicative languages, the only type of data obhcct i:; th,

or sequence, and all functions are applied to one list and product, one lit.

Since every function should be prepared to accept -4rj;ument list; of ,v

internal structure, there must be a distinguished "undefied" value prduced

whenever the internal structure of the argument is unsuited to the semantics

of the function (as in [Backus 781)--and this mismatch must first bo detectoVd!

Multiple arguments to or values from functions must be p.ickaged In single

lists, yet the existence of this substructure (or any other sub:tructre, fr

that matter) cannot be explicitly acknowledged.

Of course, deliberate substructure In data items Is ubiquitnus, :ind it Is

common practice to I ..ument it with the use of data tvpe,. Further-more,

typing in a language provides a useful form of redundancy iwhich is ssceotiht,-

to automsated checks of internal consistency.

22

In PAISLey non-primitive sets can be defined using set ,union ("A U B"),

cross-product ("A x B"), enumeration ("{ 'true', 'false' }"), and

parenthesization. The domain and range sets of every function, primitive or

not, must be declared (although a function need not have arguments). The

domain and range declarations can use arbitrary set expressions. Here are

three example declarations:

f: -- > A

g: B x C -- > D U E

h: S --- > T.

When a function is applied to arguments, their types must be consistent

with the domain declaration of the function. Consistency can be defined with

the assistance of type conversion, however, so that the composition "h[g[f],"

is perfectly legal if the definitions:

A BxC;

S - INTEGERS;

D = { 0, 2, 4, 6, 8 };

E { I, 3, 5, 7, 9 }

have been made. This notion of typing provides all the documentation and

redundancy desirable for engineering goals, without sacrificing any of the

flexibility attributable to typelessness. All that it requires is the ability

to compare any two set expressions for containment, which is easily done giver.

this particular language of set expressions.

4. QUALMS ABOUT OPERATIONAL REQUIREMEMTr

Despite the obvious advantages of operational requirrernt-, on, cannot

help but have certain reservations about the idea. In this section we exa:.ne

its apparent disadvantages.

4.1. Encroaching on design

Aren't operational specifications actually design specificatlins rat.er

than requirements specifications? This question is often prompted bv the

precision, potential for detail, and executability of cperational

specifications.

Traditionally, it is said that requirements state what is to he done, and

a design states how to do it ([Ross & Schoman 77]). In other F'erds: Proper.'.

requirements specify the functional and performance properttos o. a .1.

where both "functional" and performance properties are characteristics 7r tc-,,

system as experienced by its environnent, but the functic-na I,-' I ir,

expressable in terms of digital logic, while the perfcrnarct cpr:ert:-e

concern such physical concepts as time (see 5..4). Design he -ins -,he n

resources from which the system is to be constructed are n'r,,. Y'- _-

design is a matter of managing scarce resources to .eet perfl-An,-'.

Adopting this definition of the boundary bet ,een re'jlireo;e:it- ii i,

a requirements specification does not stray into dea1i:n if ,nl o,:

avoids managing resources, either explicitly or implicitl'. O A".,ev enah1.i,

the requirements analyst to do this, as illustrated by the req'iirerents 1r

the process-control system, the process structure of ,hIch is si own in Fi,:,1re

8 (process interactions are labeled with the type of information that -s

transferred).

Here the environment is specified by processes sJmu] t n g the tr!r-c

machines, the line-printer, and the human operator. (The 01Vi ron-o'nt r, l,',nt

to requirements analysis may extend further that, thi, I ic. 1ud.ng, fr

instance, the people who use the reports and their intentded puirp,-1, Tb,

"machine-monitor" processes tend to their individtial r.iThl:,., re.iin the

sensors and providing immediate local feedback. These proc'-,;,, lso ,

data along to the "factory-monitor" process, whi'h ' 'ops rri- ' 0ibl

-- -- --- - , -

conditions and alarms the "operator" when necessary. All monitoring processes

send selected data to the "database", which answers queries from the

operator" and the "report-generator".

Note that no resources are explictly represented in this

specification--all of the internal processes are derived directly from the

various system functions. We will now argue that neither the process

structure nor the structures inside processes place implicit constraints on

resources.

Nowhere is the difference between requirements and design more apparent

than in the requirements principle of "sufficient processes"--use as many

processes as performance analysis and functional decomposition suggest. The

machine monitors are separate from each other because each must synchronize

itself with a different (asynchronous) machine, and the factory monitor

performs a different function altogether. The report generator is a separate

process from the database because the database has real-time response

requirements and the report generator does not. It is likely that in the

design for this system, all of these processes will be implemented by

time-multiplexing a single physical processor. The processor will he a scarce

resource, and must be allocated (perhaps using priority interrupts) so that

the performance requirements on all processes will be met. Thus partition

into processes is a way of expressing relationships having to do with

functionality, synchronization, performance, etc., and not resource

allocation.

Within processes, we have already discussed the nonconstraining nature f

applicative expressions. The handling of states is likewise noncommittal.

Consider the "database" process: its state space is "DATABASE", the set of all

possible process-control databases, and its successor function is

"database-cycle". "Database-cycle" processes one input, be it a data update

or query, and produces as its value a new member of "DATABASE", which replaces

the old process state at the end of the process step.

There are many ways to update a database. Two of the obvIour,

possibilities are to modify records in place, or to create an entirely new

copy and then over-write the old one. The former is more efficient but only [
works well for relatively static data structures; the latter is more flexible

but expensive, and also more amenable to reliability measures--tho lld

database is not destroyed until the new has been successfully completed.

These and intermediate possibilities, dIffforing in their rosource allocation

and performance characteristics, are equally well stbsumed by the ahstraCt

mechanism of state replacement.

This view of requirements is elegant and satisfying, but it Is not the

whole story. Pragmatically, a requirement is any property of the proposed

system that is necessary to satisfy the originating organization of the

acceptability of the system, and these properties may very well include

decisions about resources. Use of a particular computer or software subsysten

may be required because the originating organization already owns it, and

management insists that it be used. There may even he a requirement that the

system must fit into a particular amount of memory; this mnight be the case,

for instance, if the system is a monitor of experimental equipment, an! shares

facilities with other experiments on a satellite. The amount of memory in t'ip

on-board computer allocated to each experiment is an administrative decision

which must be made (at least tentatively) before work on developing the

individual experiments can begin.

The reality is that a system develops through a hierarchy of i(e'Cisions,

each decision constraining those below it in the hierarchy. No s5sterl i.

developed in a political or economic vacuum, and almost no systei pertorms its

function without interfacing with any pre-existing computer system; a!; a

result, some decisions are made prematurely or nonoptimally cempared to sorme

theoretical decision procedure based on technical grounds alorn. Thus, even

though resource decisions are premature at the requirements lo.vel, any

requirements language which is unable to record them will he terriblv fragile,

performing adequately only in the most idealized of situations.

PAISLey can record resource decisions because resource structures are

like any other structures occurring in digital systems. They can definitely

be specified if there is a general model of digital computation, which PAISley

offers. Hardware and software modules, for instance, can be specified as

processes, and then included as part of the environment of the proposd

system. This is a great strength of the operational approach--ths, pronie of

no unpleasant surprises when new applications or economic c ontext4 ar.-

encountered.

The ultimate test of whether or not a decision helon)q in thle

requirements is whether or not the system could feasibly 'No -onstruct.od in ;!v

other way. This criterion can be illustrated by sv,.r- fatl r.o f the *\t.KT

system.

The first requirements problem is that the system is required to use a

military standard radio link for communication between the test elements and

the contractor-supplied part of the communication network.*** This is a

classic example of a (premature) resource requirement, since the requirements

should confine themselves to the necessity of (and performance constraints on)

communication, and let the contractors determine the best method. But

accepting the inevitable, we specify the existing radio link as part of the

environment of the proposed system (Figure 9).

The next problem concerns the times to which event messages from test

elements (new positions and weapons firings) refer. The central system must

know these quite accurately to do meaningful simulation, but it cannot infer

the times at which they were sent from the times at which they are received,

because delay in the ground communication network is sure to be long and

erratic.

There seems to be only one solution to this problem: put timestamps on

the messages when they arrive at the radio towers (until that point the delay

is small and stable, due to the dedicated radio channels). If true, there is

nothing wrong with specifying even this very design-like decision in the

requirements (Figure 10).

Note, however, that this operational requirements specification is still

quite different from a design for the system. The specification of the
"radio-tower" processes will show that they all get current times by

requesting them from the "real-time-clock" process, which "ticks" once per

process step. The asynchronous interaction point within the radio towers will

at first appear as the primitive function:

current-time: --- > TIME.

The necessary performance requirement will be specified as:

current-time: 1time ---> maximum is 1 microsec".

This means that "current-time" must be evaluated, by interacting with a global

clock, in one microsecond or less in all radio towers. The design to meet

this requirement will probably involve accurate local clocks which are

synchronized via some protocol before each test begins.

Finally, we must consider exactly what is meant by "real--time

simulation". Is the simulation event-oriented? Is each incoming message

processed as it arrives? What if a late-arriving message contradicts

_7

comethinM that hati Already heen nonpltirel? (The latter could happen If, In the

absence of a recent poq t .i mi na . I -I 1vntsim fxt rel,il .,I i i h . o'iirv,

trajectory of a test element; the late-arriving message could show that it had

swerved.)

With existing levels of technology, it is not feasible to build a system

which performs simulation of this complexity, in anything close to real time,

and backtracks on the basis of belated evidence. Therefore it is not

over-constraining any feasible design to put a "no-backtracking" policy into

the requirements. Also, the simulation must be oriented toard slices of time

rather than events because a shell in flight presents a continuous threat over

some period of time. The discipline imposed by the operational approach

forces us to understand these issues before specifying the requirements for

the central simulation facility, which is done as follows.

The relationship between simulation time and real time is shown in Figure

11. The test is viewed as a sequence of "frames", or snapshots, each

containing the positions of all active test elements. The "granularity" g of

the simulation is the interval between frames. The granularity must be at

least as long as the time it takes to compute a frame, or the simnlator will

fall increasingly far behind.

Let d be the projected maximum delay in the communication network. Then

computed frames can be produced with a steady real-time delay of d - g. in

computing the frame for time t, the simulator waits until t + d to nake -ure

it has received all messages sent at t or before (messages irriving late.- thin

this will have to be ignored), then computes the frame to ho ready at t - -

g. The quantities d and g will be incorporated into performance requirements,

of course.

This is carried out by the process structure shown in Figure 12. The

simulation is clocked by the "input-buffer" process, which collects me sA.P,

continually but hands them over to the simulator in batches at irtervals of !.

Each step of the "simulator" process computes a new frame from the old frare,

a batch of messages, and various threat and target models. It also produces a

batch - of "kill" messages, which are transmitted by the "output-buffer"

process.

4.2. Too much precision

There can be little question that specifications written in PAISLey are

too precise, and based on too many technical principles, for c'iitomers, end

users, managers, and other untrained personnel to understand.

At the same time, their rigor can be invaluable to the trained analysts

who will write them (this is based on numerous experiences of h2ing confronted

by surprise with the vagueness of my own ideas about a systerm). Informal

analysis must always come first, but we have not yet fully exploited the

potential of formal languages for expressing approximate or incomplete

knowledge and real-world concepts.

There is not really a conflict here, simply because nontechnical people

do not have to use the same representations that the analysts do. Analysts

can communicate with them using diagrams, simplifications, narrow views,

partitions and projections, etc. derived from the current PAISLey

specification. The process diagrams (Figtires 4,8,9,10,11) are nicely visual

and seem fairly intuitive, for instance; it is also likely that dataflcw

diagrams could be used to show major computations without bothering about

timing and control, and that semantic nets, which are used in (Mitterneir PC!

and [Yeh & Mittermeir 801 to represent data structures, could be used for the

same purpose here.

Among the most popular and successful features of SREM (RSL) and PSL/FSA

is that specifications are stored in a database from which a variety of

up-to-date reports can be generated automatically. We onvision PAISLv

being installed in such a database, and ;iope that user-oriented reports and

diagrams could likewise be produced by tools running on the current

specifIcation.

4.3. Interface with data-oriented specification techniques

Other researchers have investigated the problem of requirements for

data-processing systems, using as a starting point for their formalisms

database languages, i.e. languages originally developed to describe tio'

"conceptual schemas" (abstract, virtual, semantic structores) of databases.

The notion that a requirements model should be an explicit represent itn of

the proposed system interacting with its environment has also been derived in

this context, but with a completely different type of specification for the

model. A philosophy of data-oriented modeling is presented in jSal7or &

Goldman 79), while [Yeh et al. 79b), [Roussopoulos 791, and rMittprmelr A0;

exemplify it. (Smith & Smith 791 defines a particular dat -orientod

specification language designed to have all the generality, flexibility, and

power needed for complete specification of systems from a data-driven

perspective.

It is clear that a data-oriented technique is a more natural way than

using PAISLey to develop requirements for data-processing systems. Yet data

is a vital part of any system, and cannot be ignored by any reruirements

technique. It is our purpose here to show that process-oriented PAISLey

specifications and data-oriented specifications are both based on the

underlying model shown in Figure 13, and can potentially be compatible and

even complementary. Then analysts will be free to use either or both (in

parallel) as the application and phase of development suggest.

In both approaches there are data items which reflect the state of rie

relevant part of the environment and the state of the systei. The basic

relationships among data items are even the same: In data-oriented languages

data items are organized into types, and types are related by "generalization"

(a type/subtype hierarchy) or "aggregation" (a "component-of" hierarchy). in

PAISLey set membership provides typing, set union provides generalization, a:id V

cross-product provides aggregation.

Thus if the collection of process states in a PAISLey specification is

viewed as a database, it differs from a "normal" database only in having a

somewhat restricted structure. Furthermore, the restrictions are tailored to

the nature and needs of embedded systems. Specifically: (1) Its size is

fixed, (2) it is divided into a fixed vector of components (process states),

and (3) no item is a component of more than one item.

Restrictions (2) and (3) come about because the specification is to be

interpreted as a vector of autonomous distributed parallel computations (the

latter prevents one item's being shared between process states). Restriction

(1) is based on the philosophy of PAISLey (see 5.1), but its acceptability

reflects the nature of embedded systems--because of the close interaction

between an embedded system and its environment, the environment is stable

rather than transient. Consider, for example, the processes representing tet

elements in the environment of the AFWET system. Prestmably a large and

open-ended set of planes, tanks, ships, etc. might eventuallv be used in

tests, which would indicate a large and open-ended !et of environnent

processes. But the requirements document puts a definite limit of 26 on the

number of test elements active at any one time, and implies that each is to

30

have a dedicated radio channel. It makes much more sense to construct the

model with 26 test-element processes "hard-wired" to their channels, and

consider the assignment of test-element processes to physical test elements to

be outside the scope of the system.

A nice example of the contrast between data-processing and embedded

systems is afforded by an airline reservation system, which has aspects of

both. In the requirements model to be used in Section 5, the environment of

an airline reservation system consists of nothing but processes representing

terminals, of which there are a fixed number. Terminals are the only parts of

the environment that are relevant to this communication- and

synchronization-oriented PAISLey specification. The data-oriented

requirements model in [Yeh et al. 7 9a], on the other hand, interprets the

environment of an airline reservation system to consist of entities such as

airplanes, passengers, flights, and reservations, because these are the

environment entities reflected in the contents of the system's database. Note

that a fixed size would not be appropriate here.

To return to Figure 13, in models from both approaches there must be

computations which update states and interact with (or cause) other

computations. Here the situation is one of complementarity rather than

compatibility. Database languages specify data updates and retrievals,

sometimes informally, but usually with a syntax based on the predicate

calculus. They do not specify explicit concurrency, communication, or

control. PAISLey, on the other hand, lends itself to specifications in which

data manipulations are left primitive (although the work in [Frankel 79] may

lead directly to a marriage of functional and database concepts). We are

optimistic about the possibility of defining an interface between the two

types of specification so that decisions made in one could be translated into

the other.

5. THE PAISLEY LANGUA;E

In this section full details of PAISLey are presented, including a now

mechanism for process interactions, and specification of performance

requirements. An LALR grammar for PAISLey in BNF form can be found in the

Appendix.

5.1. Language philosophy

PAISLey is intended to be simple. In particular, only features which are

directly associated with run-time semantics are included.

For production purposes the language must be supported by a system which,

in addition to storing specification fragments and collecting them into

executable configurations (not to mention providing tools for static analysis

and report generation), offers such conveniences as scopes, versions, macros,

parameters, libraries, meta-notations, etc. The current frenzy of research on

"programming environments" makes it plain that the design of such a,-

environment is not a trivial task, and should probably not be undertake t

simultaneously with development of the specification semantici.

Specifications prepared using any of the above features would be translated

into PAISLey (as currently defined) before interpretation.

Stylistically, PAISLey follows APL in using distinct symbols for Jistinct

operators (but has far fewer of them!). This leads to a concise notation in

which essentially all words are user-chosen mnemonics. in this decision and

the one above, we apply exactly the same philosophy as (Hoare 78].

One other important principle is that every operational structure must ho

realizable with a bounded amount of resources (time and space). There is a

bounded number of processes, no process state can require an unbounded amount

of storage, and no process step can require an unbounded amount of evaluation

time.

The purpose of this is performance, i.e. making it possible to design

systems which are guaranteed to meet their performance requirements. Clearly

if a computational path contains an unbounded loop, or may have to construct a

data structure of unbounded size, no guarantee that it meets an absolute time

constraint is possible. In PAISLey the only unbounded "structure" Is the

infinite succession of process steps of each process, and this one exception

cannot be avoided.

The static system structures which result from the boundedness principle

will greatly facilitate proofs of internal consistency, correctness, and other

formal properties.

5.2. Sets, functions, processes, and systems

Statements in PAISLey are delimited by semicolons, and comments are

enclosed in double quotation marks.

Names are typed for greater readability. The names of functions are

always in lower-case letters, and the names of sets are al'jays in upper-case

letters (hyphens and integers may be used in either, but they mus begin with

alphabetic strings). Constants are either numbers, or strings enclosed in

single quotation marks.

There are four kinds of statement: system declarations, functinn

declarations, set definitions, and function definitions. Since a system is a

fixed**** tuple of processes, we use the tuple-construction notation for a

system declaration. A process is declared using a function anplication which

applies its successor function to an expression evaluating to its initial

process state. Thus a system consisting of four processes, three being

terminals and the fourth being a shared database, would be declared as:

(terminal-l-cycle blank-display],
terminal-2-cycle [blank-display],
terminal-3-cycle blank-display],
database-cycle[initial-database]

where the following domain-range declarations would be appropriate:

terminal-l-cycle: DISPLAY --- > DISPLAY;

blank-display: ---> DISPLAY;

database-cycle: DATABASE ---> DATABASE;

initial-database: ---> DATABASE.

Terminal processes have the contents of the current displays a:; th"lr prnc,-;

states- Note that there is no explicit naming of processes ir systems; this

would undoubtedly be added as part of any "environment" facilities.

Function declarations give proerties of functions, and may therefore be

redundant for nonprimitive (defined) functions--when the properties are a'.

deducible from the function's definition. Declaratimns of nonprimitiv,

33

functions can and should be checked for consistency with their definiti ins.

All function declaration statements begin with the function name and a colon;

what follows is either a domain-range declaration, of which we have seen many,

or a performance property (see 5.4).

Set definitions define set names in terms of set expressions, which use

set union, cross-product (which has precedence over union), enumeration, and

parenthesization (all shown in 3.4.2). Note that the size of all data

structures is bounded, because all tuples (members of sets defined by

cross-product) have a bounded number of components.

Function definitions define function names in terms of function

expressions, and may use formal parameters, even structured paraimeter lists,

to do so. Here are some possible beginnings for function definition

statements:

new-func-l =

new-func-2[p] = •

new-func-3[(p,q)] .. . ;

new-func-4[(p,(q,(r,s)))] - .

Formal parameters have the same syntax as function names; the ar Ile't

structure must, of course, agree with the function's domain declaration.

Function expressions may use function names, formal parameters,

constants, applications of functions to arguments, titpl, construction, ,:'id

conditional selection. Conditional selection (like the LISP '&,nd') has t]e

syntax "/pl:fl, p2:f2, - . . 'true':fn/", and evaluates to the value of ,he

first functional expression "fi" such that the predicate (iooie;n-vak:,-',

functional expression) "pi" evaluates to "'true'". Note that there is n

unbounded iteration, such as would be provided by "while . . . d, • . .", nor

is recursion allowed. Bounded iteration can he specified using conpositiin.

The result is that the number of primitive operations to evaluate any

function, including a successor function, can be bounded a priori.

As a simple example, consider the following spectfioation of !te

successor function of a process representing a CRT terminal:

terminal-cycle: DISPLAY ---> DISPLAY;

terminal-cycle[dl - display[display-and-transact[(d,think-of-ri-, u1e-t l.

think-of-request: ---> REQUEST;

display -and-transact:
DISPLAY x REQUEST --- > DISPLAY x (RESPO'NSE tT ERROR-F:A(fl;

display-and-transact[(d,r)] - (displayf(d,r)],trans.r.tfr');

34

transact: REQUEST --- > RESPONSE U E,!R-.ESSACE;

display: DISPLAY x (REQUEST U RESPONSE U E.RROR-,1E.S.SkGE) --- ", DISPLAY.

The process handles one transaction per process step, reflecting both the

request and the response in the display. The primitive function "display" can

carry out scrolling or whatever other formatting is desired.

Even aiming for a minimum of conveniences, it is impossible to do without

some feature for defining groups of nearly identical items. in PAISLey this

is done at all levels using the same index notation, as seen in:

VECTOR - #1..10< x INTEGER >,

which defines members of the set "VECTOR" to be lO-tuples of integers. Index

notation always denotes a sequence of the expression In angle-brackets, with

the first symbol in the brackets used as the sequence delimiter. The integers

after the "#" give the lower and upper bounds of the sequencing count. The

only index notation without a delimiter symbol is the one for bounded

functional composition (application), which makes "#l .. 3 < func > [arg,"

equivalent to "func[func[func[arg]]]".

In most cases what we want is a group of statements or expressions which

differ slightly. This is done by operating on names, which are defined so

that "syllables" (alphabetic substrings delimited by hyphens) are semantically

meaningful. If the header for an index notation begins with a "syllable"

before the "C', any syllable matching it in a name in the repeated expression

will be replaced by successive integers from the lower bound to the upper

bound. Thus:

BIG-SET - J#1..3< U LITTLE-SET-J >

is equivalent to:

BIG-SET - LITTLE-SET-1 U LITTLE-SET-2 U LITTLE-SET-3,

and the system declaration:

(k#O..9999<,terminal-k-cyclelblank-display]>,
database-cycle (initial-database])

creates a system with 10,000 terminal processes (an airline reservation

system!), where the successor function of tlit thirteenth one I5

"terminal-[2-cycle".

Index notation can even extend over groups of statements. Suppo';e .

want our 10,000 terminals to be identical, except that snmo identification

must be built into "transact", the primitive function whose elaboration will

send to and receive from the central system. This can be done bv makln

slight modifications to the terminal spec1ficatton already given, as fo1low,;:

k#O..9999

< ; terminal-k-cycle: DISPLAY --- > DISPLAY;

terminal-k-cycle[d] =

display-and-transact[(d,r)] - (display[(d,r)j,k-transact[r]);

k-transact: RESPONSE --- > RESPONSE U ERROR-MESSAGE;

5.3. Asynchronous interactions

5.3.1. Definition of exchange functions

Asynchronous interactions between processes are specified using three

primitive functions known collectively as "exchange functions". An exchange

function carries out two-way point-to-point mutually synchronized

communication. It has one argument, which provides a value to be riutput, ind

always returns a value which was obtained as input. Thus within the process

an exchange function looks like any other primitive function; it has, hox.ev r,

tne side-effect of carrying out a process interaction. By making interaction

primitives masquerade as functions, we achieve compatibility with applicative

notation.

kn exchange function whose evaluation has been initiated intera.cts ,I%

"matching" (to be explained) with another pending exchange function. The t

exchange arguments and terminate, so that each returns as its value tilc

argument of the other.

Each exchange function has two attributes to be specified, namely a type

("x", "xm", or "xr") and a channel (a user-chosen identifier whic.' has the

syntax of a function name). The exchange function with type "X" and channol

"chan" is named "x-chan", the exchange function with tpe "xr' arni channel

"real-time" is named "xr-real-time", etc. Only exchang'e fIInct Ion th

same channel can match with each other.

The "x" is the basic type of exchange function. It can math with an .v

other pending exchange function In its class, including another of "tVpe x

If no other exchange is pending, it will wait until one is. Tf thre ire

several pending match possibilities, a m.tch w I l h e cho.; n

nondeterministically, with the proviso that there mi ust he no I koilt %,I

36

situation where a pending exchange waits indefinitely while its match

opportunities are given to other, more recently evaluated, exchange

functions).

Competitive situations occur in most systems. To enable succinct

specification of them we have exchanges of type "xm", which behave exactly

like "x"'s except that two "xm"'s in the same class cannot match with each

other. They can then compete to match with an exchange of some other type, as

the examples will show.

Embedded systems typically have real-time interfaces, especially with the

processes in their environments. To specify these we need a third type of

exchange function, the "xr", which behaves like the others except that it will

not wait to find a match. If evaluation of an "xr" is initiated and there is

no other pending exchange in its class, the "xr" terminates immediately

without matching, returning its own argument as its value. It is always

possible to determine whether or not an "xr" matched by giving it an argument

distinct from any that it could obtain by exchanging.

Figure 14(a) shows the possible matches of exchange types within a class.

Figure 14(b) (from (Friedman & Filman 801) shows the derivation of the three

types. There must be both fully synchronized primitives ("synchronizing"),

and also those which do not synchronize themselves ("free-running"). There

must be exchanges which can match with their own kind, and those that compete

with their own kind. This makes four possibilities, except that a

free-running type which exchanges with its own kind wouli be impnssible,

because it would require "matching" two simultaneous, instantaneous events.

5.3.2. Examples of fully synchronized interactions

In this section we will use exchange functions to specify tce

interactions between transaction-processing terminals and the centril

database. "Transact" in the terminal specification is elahbrated as follows:

transact[r] -
receive-responsefsend-requestfrl ;

send-request: REQUEST ---- > FILLER;

send-request(r) - xm-reaufr];

receive-response: FILLER --- > RESPONSE U ERROR-MESSAGE;

receive-response['null') - x-resp['null'J,

and the database process successor function is specified i,:

database-cycle[d] -

finalize-transaction[perform-transaction[(d,receive-request) ;

receive-request: --- > REQUEST;

receive-request - x-requ['null'];

perform-transaction: DATABASE x REQLEST --- > DATABASE x RESPO NSE;

finalize-transaction: DATABASE x RESPONSE --- > DATABASE;

finalize-transaction[(d,r)] - proj-2-l[(d,send-response[r1)];

send-response: RESPONSE -- > FILLER;

send-response[r] - x-resp[r].

By renaming (redefining) the exchange functions with mnemonic names, wQ are

also able to type their domains and ranges. Exchange functions thenselves are

typeless because they must handle all types.

"Send-request" in a terminal and "receive-request" in the database _atch

with each other to transmit the request. Note that the type "x-n "s in the

terminal compete for the type 'x" in the database; if nothing but " s were

used, two evaluations of "send-request" might match with each other! Since

the "xm" and "x" are symmetric with respect to synchronization, either -.a

have to wait for the other.

After the request is processed against the dtabase,

"finalize-transaction" disposes of the results. It is defined in terns of tie

intrinsic function "proj-2-1", which projects an ordered pair enta its fir-t

component, in this case the updated database. The second cc, ponenti i.-

evaluated only for its side-effect of sending the response bark, and t'e

*'null" value it returns is thrown away.

"Receive-response" could have been defined using type " k ', but an .. x.

also correct, because precedence constraints enforced by the, functi. nal

nesting of "send-request" inside "receive-response" ensure that at noa t one

instance of "receive-response" will be in evaluation at any one tin.e, na-ely

that of t' o i-,ess whose request is now being processed. Thus na-tchlfnv n

the class "resp" is always unique.

5.3.3. Examples of free-running interactions

A "free-running" process is one whose only interactions occtur via "Nr",

so that it will never wait to synchronize with another pr, e . Th

prototypical free-running process is a real-time clock, whi-h t cke on-, per

process step, and could not fulfill its intended fknctiin i it had anv.

38P

synchronizing interactions. Such it proces4 is -,pecified:

(clock-cycleCO], ...); 1
clock-cycle: TIME --- > TIME;

clock-cycle[t] - proj-2-l[(increment~tJ,offer-time[tl]);

increment: TIME -- > TIME;

offer-time: TIME --- > FILLER U TIME;

offer-time~t] - xr-timeft].

Any process wishing to read the current time must evaluate:

current-time: --- > TIME;

current-time - xm-time['nullV].

Concurrent "xm-time"'s will compete to match with "xr-time", implyinig f-r this

particular specification that no two readers will ever get the same clock

value.

Another common type of free-running process is a digital simulation of a

nondigital, unintelligent environment object. Here is the top-level

specification of the processes representing the machines in the environment of

a process-control system ((Zave & Yeh 81]):

J#L. .3

< machine-j-cycle: M4ACHINE-STATE ---)> MACHILNE-STATF;

machine- 'J-cycle~m] -
pro.J-2-lf(simulate-machine [M (feedback-j- if-any)],

offer-machine-j-d ata[s ense[m]]l

feedback-j-if-any: --- > FEEDBACK U FILLER;

feedback-j-if-any - xr-j-back[null'];

simulate-machine:
MACHINE-STATE x (FEEDBACK U FILLER) --- > MACHINE-STATE;-

sense: MACHINE-STATE --- > SENSOR-DATA;

offer-machine-j-data: SENSOR-DATA --- > FILLER P SENSOR-DATA;

offer-machine-j-data~s] -xr-j-sens(s]

During each process step two things are done in parallel: (1)

..simulate-machine" computes the next process state, which is an elot'ment of

"MACHINE-STATE" encoding the machine's current status, and (2) the current

output of sensors attached to the machine ("sense~m]') is offered to the

control system via *xr-j-sens". If the control system is ready to accept the

data from this machine cycle an exchange will take place; otherwise the data

will be gone forever.

39

"Simulate-machine" has two arguments: the current machine state, and the

value roturned by "feedback- j-i f-any". This function is defined as
"xr-j-back", an exchange function which interacts with several s ites in t he

control system which provide controlling feedback to the jth machine. If some

actuator is being activated at the moment "xr-j-back" is evaluated, an

exchange takes place and a value in "FEEDBACK" is returned. Otherwise the

argument "'null" is returned, indicating that no actuators are being used.

Our final example of a free-running process is a producer-consumer

buffer. Its process state is the current buffer contents, and is successor

function is:

next-buffer: BUFFER -- > BUFFER;

next-buffer[b] - give-to-consumer[get-from-producer[b]];

get-from-producer: BUFFER -- > BUFFER;

get-from-producer~b] = /fullfb]: b,
true : put-on-tail[(xr-prod['null'],b)]

give-to-consumer: BUFFER ---> BUFFER;

give-to-consumer[b] -

/emptytb]: b,true put-on-headf(restfb],xr-consjfirst[b]])]

On each process step "get-from-producer" provides the opportunity to put

one new element in the buffer (assuming it is not already full). If some

producer has a pending "xm-prod[new-element]", "new-element' will be returned

as the value of "xr-prod" and inserted. Otherwise "xr-prod" returns "'null"',

which "put-on-tail" will simply ignore.

Likewise, on each process step "give-to-consumer" offers tne element at

the head of the buffer ("firsttb]") to any process evaluating

"xm-cons['null']". If such an evaluation is pending an exchange will take

place, and "xr-cons[first(bll" will return "'null', which "put-on-head" will

ignore. Otherwise the unconsumed "first(b]" will be returned, and

"put-on-head" will reinstate it.

The expected behavior of this process (at least under li;ht loading) will

be to cycle very fast, checking for interactions but not having any on nost

process steps. This shows that exchange functions are in some sense more

primitive than synchronization mechanisms which enable a process to wait for

any one of several events to occur. The payoff is a muich simpler

implementation for exchange functions, and the choice is in keeping with the

PAISLey philosophy of simplicity and minimal semantics. It is also aruniabl,

that the above specification is as perspicuous as any, largely because of the

benefits of applicative style.

5.3.4. Implementation

In almost all cases the pattern of matches within a class is one-to-one

or many-to-one, the latter for resource competition. In this section we

present an efficient distributed algorithm for implementing exchange i.-atching

in these cases (one additional condition: it cannot be many-to-one matchino

where the "xr's are the "many"). In all cases a central matching facility

for each class will do the Job.

Consider first an exchange class with many "xm"'s and one "x- (or just

two "x -s, in which case one of them takes the role of the "xm" in this

description), all residing at different nodes of a network (this is

illustrated in Figure 15). When an "x" is initiated, a message carrying its

argument is sent to the node where the matching "x" resides. These messages

are queued up in arrival order. When the "x" is initiated, if the queue is

empty, it waits until it is not. When the queue is not empty, it removes the

first entry as the "match", takes the value stored there as its own valie,

sends a termination message containing its argument to the matching "xm", and

continues. Computation can continue at the "x-m" as soon as the termination

message (with its value) is received.

This implementation uses only two messages per match, and automatically

prevents lockout with FCFS queueing. For classes with one "xr" and either one
"x" or many "xm"s, the queue is formed at the site of the "xr", and the only

modification necessary is that if the "xr" is initiated when the queue of

possible matches is empty, then it does not go into the wait state.

5.3.5. Further properties and justifications

Because exchange functions are only "pseudo-functions" and have

side-effects, expressions containing them cannot be optimized to avoid

evaluation of expressions whose values are not needed. The most common

example of this is a successor function with the form "proj-2-l[(a,b)]", where

expression "a" computes the next state and "b" interacts with other processes.

There is also a potential problem with distributing values obtained by

interaction, but the formal parameter mechanism does this nicely. Suppose the

effect of

/equal(x-denom['null ",0)1: 'divide-check',
true divide[(numerator,x-denoi['nuill'))]

is wanted, where both usages of the value returned by an exchange are supposed

to result from a single evaluation. This can be specified unambiguously by

defining "quotient" as:

quotient[(n,d)] - /equall(d,0)]: -divide-check',
'true divide[(n,d)]I,

and then using it in the invocation "quotientf(numerator,x-denon{'nn1j'I)j"

Establishing the internal consistency of a specification witl, exchange

functions requires some attention. The range of a user-chosen function

defined as an exchange must agree with the domains of all those with vhich it

can exchange. Furthermore, precedence constraints caused by nested evaluation

structures can cause exchange deadlocks. But the channel of an exchange

function has been made a constant attribute rather than an argument to it just

so that exchange patterns would yield to static analysis, and simple arguments

do establish deadlock-freedom in many common cases. For instance, the process

hierarchy visible in Figure 8 expresses the acyclic "dependency" structure of

the interactions in the system; the argument that this prevents deadlock is a

common one in the operating system literature (e.g. [Brinch Hansen 77]).

There are so many proposals for distributed interaction mechanisms

current today that comparison and justification are essential. Most proneriv,

exchange functions are motivated and justified by our goal ol fittiro

processes and asynchronous interactions into an applicative framework, and in

this role they are almost unique (see also [Milne & Milner 791). Their

generality is established by Figure 14(b) and by extensive experience with

them, which indicates that the only kind of interaction they cannot specify is

. unbounded broadcast.

Exchange functions can also be justified, however, on the same hasis as

procedure-based mechanisms, which fall into the two general categories of

procedure-call mechanisms ((Brinch Hansen 781, [Hoare 741], [Ichblah et al.

79]) and message-passing ([Rao 80)). Exchange functions are more primitive

than procedure calls because they only specify interaction at one point in

time rather than two (procedure call and return). They are thus more general

and easier to implement, while the mutual synchronization of the communicating

processes provides much of the structure and control usually as';oclated with

procedure-call mechanisms.

It is the mutual synchronization that most distinguishes exchange

functions from message-passing mechanisms, where (usually) messages are

automatically buffered, so that the sender transmits the message and

continues, while the message is queued until the receiver is ready for it.

The decision against this scheme is based on our concern with

performance. Consider a set of terminals sending updates to a central

database. With exchange functions a terminal cannot create new work for the

system until the system has accepted its previous work. If a terminal could

simply send an update message and continue, its speed could increase

(unchecked by the ability of the system to handle the work), the queue at the

database could grow to unbounded lengths, and no bounds on the performance of

the system could ever be established.

At the same time, there 's nothing wrong with bounded buffering, but this

can always be specified in PAISLey. But introducing hounds within an

abstract, general-purpose interaction mechanism (such as "message passing up

to some bound") would seem a most unfortunate mixture of specification and

implementation.

Given that synchronization is going to be two-way, it costs very little

in the implementation to preserve the possibility of two-way data transfer,

although it is seldom used. It also keeps the number of primitives down by a

factor of two, since otherwise each of the three exchange functions would have

to come In a "sending data" and a "receiving data" version.

Of all the well-known interaction mechanisms, the most similar t

exchange functions is Hoare's input/output primitives. In H{oare's language, a

pair of statements, "Pinput" in process Q and "Q!output" in process P, will

come together in the same mutually synchronized manner that two matching

exchanges do. "Output" is an expression whose value is assigned to the

variable "input", assuming appropriate type correspondences. In addition to

the relatively unimportant data asymmetry, Hoare's primitives seem to he

different from exchange functions in three fundamental ways: (1) There is no

way to specify real-time or free-running interactions. (2) There is no

straightforward way to specify resource sharing, since all "matches" are

one-to-one by process name. In Foare's language a process representing a

shared resource must have a separate command for each process with which it

can communicate, and guard that command ((Dijkstra 751) with an input command

naming the appropriate process of the many. The guard (and statement) to be

executed are chosen nondeterministically from the processes that are ready to

communicate. These multiple statements seem distinctly clumsy compared to an

"xi"/"x" exchange match. Furthermore, the full knowledge each process must

have about the names of the processes with which it communicates makes

modularity difficult to achieve. (3) Hoare's primitives belong in a

procedural, rather than applicative, framework. The destination of a data

transfer, for instance, is specified by an address.

5.4. Performance requirements

5.4.1. Definition of performance requirements

So far the only structure that has been needed for complete and formal

specification of performance requirements is attachment of tining and

reliability attributes to functions in the "functional" requirements

specification. A timing attribute refers to the evaluation time of the

function. It is a random variable, and any information about its

distribution, such as lower or upper bounds, mean, or the distribution itself,

may be given.***** Timing attributes for exchange functions are attached to

the channel, and hold for all interactions on that channel.

A reliability attribute can only be attached to a functirn whose rang" is

divided into two subsets (e.g. "---> SUCCESS-RESULT U FAILURE-RESULT"), the

first for the values returned by successful evaluations, and the ecnd for

values returned when the evaluation fails. The attribute itself is i di3c(ree

(binary) random variable whose two outcomes denote successful *)r failed

evaluations, and any information about its distribution may ' given.

Reliability attributes for exchange functions are attached to the channel, and

hold for all interactions on that channel. Furthermore, when an exchans:e

function fails it must match with another whose evaluation alo fail-, with

the values of both being selected at random from the "f'ilure" subscts ()f

their ranges. This restriction is made so that failures will not af fect . I

complicate analysis of exchange patterns. Failure of a nonprimitivo function

simply means that it delivers a value in the second subset -f it, range.

Reliability is a difficult and little-understood sunjet, hut this

definition of it has several appealing properties. It for:es the ':pecifed

system to have the primary characteristic of a reliable ,vstein, -a:. ly goin'

into a well-defined and previously anticipated state when something fails. It

makes reliability independent of timing and functionality, since a function

evaluation must satisfy its timing requirements and deliver a value in the

declared range regardless of whether it succeeds or fails. In fact, we have

deemed this property so important that we have sacrificed some realism for it:

only primitive functions can really fail, since nonprimitive ones are always

evaluated according to their definitions. Much more knowledge of reliability

is needed before we can be sure how successful this approach will be, but its

formality and tractability are strong arguments in its favor.

These performance requirements can be simulated by the specification

interpreter, and checked (in principle!) for internal consistency, just as the

functional ones are. This means, for instance, that if "ftx]" is defined as

"g[h[x]]", and there are upper bounds on the evaluation times of all three,

then the upper bound on "f" must be strictly greater than (allowing time for

invocation/argument transfer) the sum of the upper bounds on "g" and "h".

5.4.2. Examples of "synchronous closed-loop" performance requirements

An on-line database system can be called a synchronous closed-loop"

system--"closed-loop" because the entire feedback loop realized by the system

is explicitly represented, and "synchronous" because the terminal process (on

behalf of the cooperative person behind it) waits for responses, i.e.

synchronizes itself with the system. For these systems the basic performance

requirements are particularly easy to specify, and all are attached to tie

terminals. We will refer to the functional terminal specification in 5.2.

A response-time limit of 3 seconds is specified by:

transact: "time --- > maximum - 3 sec"

(Performance requirements are currently just comments in the PAISLey syntax

because we have not yet settled on a formal language for distributions.) An

average load of 200 transactions per second is specified by:

terminal-cycle: "time ---> mean - 50 see",

which says that on the average a terminal demands a transaction (goesi throiich

a cycle) every 50 seconds. Finally, the requirement that at least 99 per cent

of all transactions must be processed successfully is expressed as:

transact: "reliability --- > prob{ "success" I >- .99",

which, of course, can only be attached to "transact" because Its rmnge Is

divided into success ("RESPONSE") and failure ("ERROHR-MFSSAGF") subranges.

5.4.3. Examples of "asynchronous closed-loop" performance requirements

The process-control system depicted in Figure 3 can he called in

asynchronous closed-loop" system--"asYichronous" because the Machines, which

are the source and destination of the major feedback loop realized by the

system, are free-running. The system must keep up with them without their

cooperation. Performance requirements for these systems are more of a

challenge, but the operational approach enables us to sp-ocify t hem

straightforwardly. "Open-loop" specifications, in which not alI of the

feedback loop (ultimately, the purpose of any embedded systein Is to realize

feedback loops) is included explicitly in the model, have pe r forinanc'

requirements similar to these. An example of an open-loop specification would

be a patient-monitoring system in which treatment of patient.: was not

represented, only display of warning messages.

We will now present the timing requirements for the procoss-contr-l

system. The machine processes specified in 5.3.3 were dsigned to carry out I

fixed-interval simulation with step time or granularity .1 second. This is

specified:

J#1..3< ; machine-j-cycle: "time --- > = .1 sec" >.

Recall from 4.1 that there are two closed feedback loops roili.d bv ti'%

system. The fully automatic feedback loop for conditions 11-al t, >-di.'>imA'.

machines is provided by the "machine-monitor" processes. The partia"11. manki.

feedbark loop for dangerous factory conditions includes tho 'mi:' --nt

processes, the "factory-monitor" process, and the "prat er prlcs dire "

in its realization. Factory engineers give thee)s r,.;-n:.,

limits of 3 and 60 seconds, respectively.

The automatic feedback loop will be considerd fir9t. T' ;c ,-, r

functions of the machine monitors are defined as follows:

J#1..3

< ; machine-j-monitor-cycle: MACH{INrE-IMACE --- > :AK{ ';v-

machine-j-monitor-cycle m,
process-machine--data ((m,get-mach (r'-ji-d.i1, I;

get-machine-J-data: --- > SENSOR-DATA;

get-machine-J-data - x-j-sens('null] ;

process-machine-J-data:
MACHINE-IMAGE x SENSOR-DATA ---) ,\CH 'E- L'.';W

process-machine-j-dataf(m,d) -
proj-3-1[(maintain-machine-mage(m,d,]

feedback-j-i f-needed[check-,i chl tot-c, d . t tT.: ' ,

rovide-machine-,j-da (_d)__

maintain-machine-image:
MACHINE-IMAGE x SENSOR-DATA --- > MACHIE.-IMAGE;

check-machine-condition:
MACHINE-IMAGE x SENSOR-DATA --- > FEEDBACK U ok" J;

feedback-j-if-needed: FEEDBACK U { -ok" } ---> FILLER;

feedback-j-if-neededf] - /equall(f,'ok')]: 'null"
,true : feedback-j[f/;

feedback-j: FEEDBACK --- > FILLER;

feedback-j[f] - xm-j-back[f];

provide-machine-J-data: MACHINE-IMAGE x SENSOR-DATA ---> FILLER

A monitor begins its step by getting sensor data from its machine (see 5.3.3).

"Process-machine-j-data" does three things in parallel with that information:

(t) update an "image" of the machine which is kept in the process state for

the purpose of making history-sensitive decisions, (2) check to see if

feedback is needed and if so provide it, and (3) offer edited forms of ,he

sensor data to other parts of the system. Note that the automatic feedback

loop is completely contained within one cycle of a machine monitoring process.

This means that the necessary formal performance requirement Is simply:

J#I..3< ; machine-J-monitor-cycle: "time --- > maximum = 3 sec" >.

Since the other feedback loop involves action by the environment (the

operator) as well as the system, performance allocation of the 60-second

leeway must be included in the requirements. Performance allocation i,;

normally a design activity, but this is a typical eximple of the frequent neod

to handle "design-like" decisions at the requirements level. If thee operatir

is allocated 50 seconds to respond to the alarm, this decision can ho

documented by specifying:

operator-cycle: "time --- > maximum - 50 sec",

since the operator's response to an alarm is completely contilned within one

cycle of that process.

The "factory-monitor" process is very similar to the "machine-monitnr"

processes, except that it gets its data from the machine monitors instead of

the machines, and responds to detecting an undesirable condition hv notlf'I.g

the operator instead of interacting with the machines. Thus the iitomatic

part of this feedback loop is completely contained within one c.cle c" the

"factory-monitor" process, with the understanding that the data ir receivos

from the machine monitors may already be a; much as scd li.

obvious conclusion is that the factory monitor must complete Its -vcle withPi

60 - 50 - 3 - 7 seconds:

factory-monitor-cycle: "time --- > maximum - 7 sec".

Both the machine monitors and the operator need to access the dataihI.e

during their cycles, and therefore depend on database response to Meet their

own performance requirements. Although it is not necessary until the ,hs,,n

phase, we can derive a performance requirement for the database that Jiili

guarantee adequate service, assuming an implementation with KCFS schedulV.:,

such as that in 5.3.4. (We know of no reasonable method besides ?CFS qe,,

for preventing lockout.) Let us say that every process must be ,iranror.

database response/access time of 2 seconds, which we judge will enable

machine monitors and the operator to satisfy their other constrairts. >;,.

interactions are mutually synchronized, no process can go on, to create :ore

work for the database until its previous request has been processed. i

means that the maximum number of outstanding requests is five (five procese- V
have access to the database), and a time limit of .4 seco<nd.s ,will I ,rmar te,,

that all are honored within 2 seconds:

database-cycle: "time --- > maximum - .4 sec".

5.4.4. "Real-world" properties

Time and reliability (the fact that son, timem ,iizitil '_ o;-7 r l' 1o -1, :

do what their definition says they will, for phvs~.ial rason; r ".'.

the reach of digital logic) are nondigital properti," that , 't1r.v, r,

affect the digital domain. In [Zave S h0) n;av ,ther :-, h ,

("real-world") properties are mentioned, weight and dfscanc,!, C- cxa.,le.

Why aren't these performance requirements as well?

The answer is that, to the extent that we know thei, the offfoctq of thes',

properties on the computational (digital) domain can he -l,,cttiod in teri ,1

functions, timing, and reliability. 4eight conutraints, for In-'I ce, ol 1...

affect how many functions can be realized. Even if we I .1 ,It ,'lc weIt

attri-butes to components of a PAISLey specificatrion, there i,' hr-; that 1n

interpreter could do with them. Therefore an Informal li'<,nt i just 1,;

satisfactory.

Distance is a more interesting example hecause 1:i, -,f(rtsct ,on the

computational domain are more varied. Distance Increases the r-ati''e ti',

for interprocess interactions, decreases component reliability, and increases

the logical complexity of interfaces which must cope with these factors. Yet

these three effects are directly expressable in terms of timing, reliahilit'.,

and functional requirements, respectively.

Factors such as these can have a profound effect on requirements. In an

airline reservation system, for instance, it may be nece;sary to divide the

response-time or transaction-reliability allowances into portions for tile

data-communication subsystem and portions for the database stihgyst m.

Although (as mentioned before) allocation is technically a design decisinn.

two additional reasons, both applicable here, for doing it durine the

requirements phase are: (I) to enable feasibility analyses of two very

different technologies, and (2) to contract the work to different

organizations.

These allocated requirements can be specified in PAISLey. ,Ce have

constructed a requirements model in which time limits are given for, and

failures can occur in, each of three stages: input transmission, transaction

processing, and output transmission. Failure at any stage aborts subsequent

stages and propagates an appropriate error message. This Is the source or

elements in the set "ERROR-MESSAGE" found in the range of "transact" in I.he

terminal specification.

6. INTERIM EVALUATION

How well do PAISLey specifications meet the goals of 1.2? i~eqpureroi'm ts

written in this language are certainly precise, unambi_uous, and exvcutahlo,

and can be determined to be internally consistent. W'e ha'e argued 'hat the

language allows, and perhaps even encourages, specificatton ; o h, .odiffable,

intuitive, and minimal.

Experience has indicated that PAISLey allows compLte sp.ocificatin '5

requirements properties :-elevant to the computational domin. It a','snothl'n

about constraints on the development process itself, such a: , il' , c';t

limits, methodological standards, anid routine malntainance Pr,-,' iur,-s. It is
also not particularly helpful in posing alternate or prioriti e _d -re re - ts

([Yeh et al. 801). And the need to supplement for:-,il re re:-) ts 'With

diagrams, comments, and other informa l avenues of huri.>In 1omnu,7c ti'n i2

never disappear.

PAISLey also enables nontrivial decomposition of c,an'x!t. i'n all thr

ways. The division of a specification into pr ce-se.; is i:) ,speci. iv ,i

form of partition, because it decomposes both static and d n, - . nr. 'ert-ios,

and because it correlates fairly well with our abstract, inLnirh,"e notion 14

system "functions". The partitioning even o xt 'Id. t, " ct i-n of

specifications, because any subset of processes can he executed in isoiati,

simply by leaving all interactions with missing pr ces a in 1,el1borI*ed

primitives In a form such as "receive-message: --- 7 >FS5AG,£". The iterpr

will evaluate this "interaction site" by choosing sum, m-;s.i at random.

This capability was used in [Zave & Yeh 81] to develop a specification in tivo

versions, each independently executable, and each obtained from tho last

adding new processes/functions in an "outside-in" sequenc.

A projection decomposes complexity by representing only i ,l.-'t)f :"

system's properties. Performance attributes aro d4,f ined .,, t t i

functional specification is independent of its perforr.imce pr Tie, (,,r

timing and reliability are independent of each other, "oth very i,,f'f, for

of projection. Furthermore, by elaborating a spocifIcatc, 1,n v unt; '.

process interactions and control-oriented f no-ti ns .u,, x-' i t k I

natural thing to do in PAISLey!), and by then specifying t,0 p r"- , .' 't

and data-manipulation functions in a data-oriented spei fi itin i', io. , I-'h1

!e

analyst can achieve an almost perfect projection of his underlying model ont%

process-oriented and data-oriented views.

Within processes, state replacement (rather than assignment) and

applicative notation offer unsurpassed opportunities for abstraction.

Applicative languages actually force the user t) create an

abstraction/elaboration hierarchy, while the high-level, but procedural,

languages now being proposed as design notations continually disrupt it with

assignment statements. Processes, however, do not lend themselves so readily

to hierarchical representations. More research is needed in this area (see

7.2, where formal manipulability is also mentioned).

- -. -,

7. PLANS FOR FUTUIRE RESEARCH

7.1. Experience

We have plans to implement a specification interpreter - - 5imn

consistency-checking, so as to gain experience with the ipact o -xeclt hb:.

specifications on the requirements development process. This will in~icio

consideration of the language front-end, and invostigation f the displ..

report, and trace facilities needed for the results of oxeoutinn.

7.2. Methodology

This work on requirements specification, w.hLch :o:; Ien -,s'sue r so f r

with small e:xamples , must be extended in the di roct ions of reouire:,:

analysis, and "scaling-up" to large svstem.s. Both probns .Kll 'e ott-,

by looking for an abstraction methodology for pr.)oe -'Fd sec i.icatio-,

i.e. a techniqae for conceiving of and specifyin, i :v to.m , Int,,- r.sI;

processes as a top-down hierarchically structured ,_,t , ; -i> tio ns .

technique for developing a top-down hierarchy would provl d a tri.! ana v

methodology, and the existence of the hlcrarchv w i i:,- i

handling the complexity of large systems.

There are several precedents to foll'w , 4

well-known arrangement of processes -hemsolvs in i ' ,r.-I- ' r- :r

where processes at higher levels -give work to" ,rocs,-- at C 0,'.r

([Parnas 74]); this will be helpful for r,_qul i .U - .- t-,"

hierarchies so created coincide with some r i o, al

"functions, seen from the requirements viewpoint. , .r•..

aggregation of related processes into "subsystems", ,a tn ' '. ,

78]). There iS clearly some correlation 'r . 'I

(requirements vie,4) and processes in our exampl, ,

encouraging sign; furthermore, many of th, sa;, ,',;

observed over and over again in embedded systc.is.

One other possibility is the use of purely ai;pia, , , " .

applied in [Smollar 79] and [Friedman & .'.iso 791, 1... ,

distributed system concepts in a way that is more i-trtr t',n

52

notation could be, because of the totalI lack of states (the concomi taint

disadvantage is inability to deal with pe.rformance or free-running Interfaces,

see [Zave 80aJ). By establishing some formal equivalences between these two

notations, we may be able to exploit some of the formal manipulability and

power of abstraction characteristic of applicative languages for our own,

process-oriented, purposes.

7.3. Design

It has been pointed out that PAISLey is capable of specifying the results

of design decisions. A logical extension of this is to investi ate Zts

properties as a design specification language. The benefits are pctentiall::

great, because a uniform language for requirements and design should make

possible substantial improvements in the traceability and automatability of

design. It might also lead to a better theoretical understanding of design

decisions as resource/performance trade-offs.

-. - -. w -- - ---- E ' u w

8. CONCLUSION

It would not be seemly to end a paper as long as this without .i

conclusion, but there is little left to say.

In addition to the varied, but small, examples discussed here, PAISLey

has been used to specify (in some 33 pages) a distributed de ;ign for in

innovative interactive numerical system, and the system has been Lnplemented

directly from that specification. Throughout the project the specification

has served successfully as an interface between the numerical and

distributed-system domains, both for human communication and for cxecutabie'

code ([Zave & Rheinboldt 791, (Zave 781, [Zave & Cole 811).

ACKNOWLEDGMENTS

Many people have contributed to the work presented here. My thanks

especially to Bob Fitzwater, with whom the foundations for PAISLey were laid,

to Steve Smoliar, Alex Conn, and Roland Mittermeir, for stimulating

discussions on requirements, to Priscilla Fowler, for the chance to try these

ideas on a class at Bell Labs, to George Cole, for diligent and able

assistance, to Dick Hamlet, who would read this stuff before anyone else would

(or could), and to Raymond Yeh, for support, encouragement, ideas, and good

advice.

REFERENCES

[Air Force
65]

U.S. Air Force, "Air Force Weapons Effectiveness Testing (AFWE-)
Instrumentation System", R&D Exhibit No. PGVE 64-40, Air Proving Ground
Center, Eglin Air Force Base, Florida, 1965.

(Alford 77]Mack f . Alford, "A Requirements Engineering Methodology for Real-Time

Processing Requirements", IEEE Trans. Software Engr. SF-3, January 1977,
pp. 60-69.

[Backus 781
John Backus "Can Programming be Liberated from the von Neumann Style? A
Functional Style and its Algebra of Programs", Comm. ACM 21, August
1978, pp. 613-641.

[Balzer & Goldman 79]
Robert Balzer and Neil Goldman, "Principles of Good Software
Specification and Their Implications for Specificatton Language", Proc.
Specifications of Reliable Software Conf., Cambridge, Mass., April 1979,
pp. 58-67.

(Belady & Lehman 79]
L.A. Belady and M.M. Lehman, "The Characteristics of Large Systems",
Research Directions in Software Technology, Peter 'egner, ed.', M.I.T.
Press, ambridge, Mass, 19/9 , . 106- .

(Bell et al. 77]
'f-- 'E. Bell, David C. Bixler, and Margaret E. Dyer, "An Extendable
Appraoch to Computer-Aided Software Requirements Engineering", IEEE
Trans. Software nr SE-3, January 1977, pp. 49-60.

(Bell & Thayer 761
T.E. Bell and T.A. Thayer, "Software Requirements: Are They Really a
Problem?", Proc. 2nd Intl. Conf. on Software Engineering, Sah Francisco,
Cal., October 1976, pp. 61-68.

[Boehm 76]
Barry W. Boehm, "Software Engineering", IEEE Trans. Computers C-25,
December 1976, pp. 1226-1241.

[Brinch Hansen 771
Per Brinch Hansen The Architecture of Concurrent Prozrans,
Prentice-Hall, Inc., 1977-'

[Brinch Hansen 78
Per Brinch 4ansen, "Distributed I'rc4e A Conckit r0ut i'rognrmi iie
Concept", Comm. ACM 21, November 1978, pp. 934-941.

(Com 80]
Alex Paul Com, "Maintenance: A Key Element in Computer, Requirements
Definition", Proc. COMPSAC '80, Chicago, Iii., October 1980, pp. 401-406.

[Davis & Rauscher 79)
Alan M. Davis and Tomlinson G. Rauscher, "Formal Technirues and Auto.-tic
Processing to Ensure Correctness in Requirements Specifications", Proc.
Specifications of Reliable Software Conf., Cambridge, Mass., Aprl 1979,
pp. 15-35.

(Davis & Vick 77]
Carl G. Davis and Charles R. Vick, "The Software Development Svst'm",
IEEE Trans. Software Engr. SE-3, January 1977, pp. 69-84.

[Dijkstra 751D W Dijkstra, "Guarded Commands, Nondeterminac and Formal Deriv-r inn

of Programs", Comm. ACM 18, August 1975, pp. 453-457.

[Fisher 78]
David A. Fisher, "DoD's Common Programming Language Effort", Computer 11,
March 1978, pp. 24-33.

[Filman & Friedman 80]
Robert E. Filman and Daniel P. Friedman, Languages and 'lodels cr
Distributed Computing, to appear.

(Fitzwater & Zave 77]
D.R. Fitzwater and Pamela Zave "The Use of Formal Asynchronois ?roces
Specifications in a System Development Process, Proc. 6th Texas Conf.
on Computing Systems, Austin, Texas, November 1977, pp. 25-21 - 2B-30.

[(Frankel 791R.E. Frankel, "FQL--The Design and Impl ementation af a 1uno t ionaDatabase Query Language", Univ. of Penn. Decisin Sciencts 79-CY-13.

Philadelphia, Penn., 1979.

[Friedman & Wise 771
Daniel P. Friedman and David S. Wisp, "Aspects of Applicti'',: Pr.lra:,-
for File Systems", Proc. ACM Conf. on IEanczua e Desi,: fr R .

Software, Raleigh, N. Car., March 1977, pp. 41-55.

(Friedman & Wise 7 8aJ
Daniel P. Friedman and David S. Wise, "Aspect, of A]icit e Pr, --
for Parallel Processing", IEEE Trans. Computers C--/, Apri i IM, : "
289-296.

[Friedman & Wise 78b]
Daniel P. Friedman & David S. Wise "Unbounded ComiutatU nal qtructr, ;
Software--Practice and Experience A, July-August 1§73, pp. !,T-4jA.

[Friedman & Wise 79]
Daniel P. Friedman and David S. Wise, "An Approach to 7air Applicat'.%,
Uultiprogrammlng", Semantics of Concurrent Computation , i.,h r,,),
Lecture Notes in Computer sc en;-- 70 5Tpringer-7a ,riu 7 .,
203-226.

(Friedman & Wise 80]
Daniel P. Friedman and David S. Wiq, , "An Tndetormtnarr C>'!-r,:,- t r r
Applicative Programming", Proc. 7th Annual ACM1 Syrp. on "r -4-~ . :

Programming Languages, Las Vegas, Nev., January 19-9Y, pp. *,-

(Heninger 79]
Kathryn L. Heninger, "Specifying Software Req i reient f~r -,'e,
Systems: New Techniques and Their Application", Fr, c. .peU it1,ns ,-
Reliable Software Conf., Cambridge, Mass., April 117 , pp. 1- .

(Hoare 74 oC . . .Foare, "Monitors: An Operating qystem- ' triicturin,.C n - . .,-..,

56

ACM 17, October 1974, pp. 549-557.

(Hoare 78]
C.A.R. loare "Communicating Sequential Processes", Comm. ACM 21, August
1978, pp. 66 -677.

[Horning & Randell 73]
J.J. Horning and B. Randell, "Process Structuring", Computing Surveys 5
March 1973, pp. 5-30.

[Ichbiah et al. 79]
J.D.-'clMhah et al., "Rationale for the Design of the Ada Programming
Language", SIPLA7 Notices 14, June 1979, Part B.

[Ingalls 78]
Daniel H.H. Ingalls, "The Smalltalk-76 Programming System Design and
Implementation , Proc. 5th Annual ACM Symp. on Principles of Programming
Languages, Tucson, Ariz., January 1978, pp. 9-16.

[Iverson 801 ..Kenneth E. Iversion "Notation as a Tool of Thought", Comm. ACM 23,
August 1980, pp. 444-465.

[Knight 721
John R. Knight, "A Case Study: Airlines Reservations Systems", Proc. of
the IEEE 60, November 1972, pp. 1423-1431.

(Mao & Yeh 801William T. Mao and Raymond T. Yeh, "Communication Port: A Language
Concept for Concurrent Programming", IEEE Trans. Software Engr. SE-0,
March 1980, pp. 194-204.

(Milne & Milner 79]
George Milne and Robin Milner, "Concurrent Processes and Their Syntax
Jour. ACM 26, April 1979, pp. 302-321.

[Mittermeir 80]
Roland T. Mittermeir, "Semantic Nets for Modeling the Requirements of
Evolvable Systems--An Example", Institut fuer Digitale Anlagen,
Technische Universitaet Wien, Vienna, Austria, May 1980.

[Parnas 74]
David L. Parnas "On a 'Buzzword-: Hierarchical Structure", Pror. IFIP
Congress, Stockholm, Sweden, 1974.

(Rao 80]
Ran Rao, "Design and Evaluation of Distributed Communication Primltive<.
Univ. of Wash. Computer Science 80-04-01, Seattle, Wash., April 1980.

[Riddle et al. 781
WilTam-E. Riddle et al. "Behavior Modeling During Software Design"
IEEE Trans. SoftwarL" . SE-4, July 1978, pp. 283-292.

[Ross 77]
Douglas T. Ross, "Structured Analysis (SA): A Language for Communicating
Ideas", IEEE Trans. Software Engr. SE-3, Tanuary 971, pp. 16-3V..

[Ross & Schoman 77]
Douglas T. Ross and Kenneth R. Schoman, "Structured Analvsis 'r
Requirements Definition", IEEE Trans. Software Enr. SE-3, laniirv
pp. 6-15.

[Roussopoulos 791
Nicholas Roussopoulos, "CSDL: A Conceptual Schema Definition Language for
the Design of Data Base Applications", IEEE Trans. Software Enr. ST.-5.
September 1979, pp. 481-496.

(Smith & Smith 791
John Miles Smith and Diane C.P. Smith, "A Data ,ise A, proach to oftware
Specification" Proc. Software Development Tools Wor.'shop, Pini-ree Pr.
Colo., May 1974 (Springer-Verlag, W.E. Riddle and R.E. Fairley, ei,;.
1980), pp. 176-00.

[Smoliar 79]
Stephen W. Smoliar "Using Applicative Techniques to Design Distributed
Systems", Proc. Specifications of Reliable Software Conf., Cambridge,
Mass., April 1979, pp. 150-161.

(Smoliar 80]
Stephen W. Smoliar, "Applicative and Functional Programming", Software
Enjineering Handbook, C.V. Ramamoorthy and C.R. Vick, eds.

Iri n all, Lnc., to appear.

[Teichroew & Hershey 77]
Daniel Teichroew and Ernest A. Hershey III, "PSL/PSA: A Comouter-Aided
Technique for Structured Documentation and Analysis of informat ion
Processing Systems", IEEE Trans. Software Engr. SE-3, January 1977, pp.
41-48.

[Yeh et al. 79a]
Iryff-nd T. Yeh et al., "Software Requirement Engineering--A Perspective",
Univ. of Texas 5'-m-66ter Science SDBEG-7, Austin, Texas, .!March 1q,9.

[Yeh et al. 79b]
R'WYMnd T. Yeh, Nick Roussopoulos, and Philip ChIng, Sy s t ei:, tic
Derivation of Software Requirements Through Structured Analv,;is', niv.
of Texas Computer Science SDBEG-15, Austin, Texas, 1979.

[Yeh et al. 80]
R-y -f"nd T. Yeh et al., "Software Requirements: A Report on the State of
the Art", UniV7 --6f Maryland Computer Science TR-949, College Park,
Maryland, October 1980 Kto appear as "Software Requirements: New
Directions and Perspectives" in Software Engineering !iandbook, C.V.
Ramamoorthy and C.R. Vick, eds., Prentice-Hlali, Inc.). -

[Yeh & Mittermeir 80]
Raymond T. Yeh and Roland T. Mittermeir, "Conceptual '-Iodeling is a Raas
for Deriving Software Requirements", Proc. Intl. Computer Symp., Taip'e ,
Taiwan, December 1980, to appear.

[Zave 78]
Pamela Zave, "The Formal Specification ot an Aapt iv, Par a llel
Finite-Element System", Univ. of Maryland TR-715, College Park, Marvland,
December 1978.

[Zave 80a]
Pamela Zave, "Applicative Specificationstof Diotfibu'e <.' te-.:
Extending them to Embedded Systems", submitted for piiblicii n, ''iO.

[Zave 80b]I
Pamela ave "'Real-World' Propertie; in the Requiremnen . :or ': b, 1 ,
Systems", roc. 19th Annual Wash., D.C. Ac'l Tech. ';vy.p. , ai 1e-sbr'-
Md., June 1980, pp. 21-26.

[Zave & Cole 81]
Pamela Zave and George E. Cole, Jr., "A Quantitative :.vlu.t-,n - f
Feasibility of, and Suitable Hardware Architectttr.: f,r, in Aditi%',
Parallel Finite-Element System", In preparation.

[Zave & Rheinboldt 79]
Pamela Za'.e and Werner C. Rheinboldt, "Desipn of an Aipr1v', Prili",
Finite-Element System", ACM Trans. MAth. Softwar- S, ",r-h 070, .
1-17.

[Zave & Yeh 81]
Pamela Zave and Raymond T. Yeh, "Executable Requi re -n s br ; to'ri'
Systems", Proc. 5th Intl. Conf. on Software Fngr., r,, Cie -11,., ',ar'!i
1981to appear.

APPENDIX: A GRAMM1AR FOR PAISLEY

This grammar is LALR, and is written in BNF with nonterminals underlined.

Comments are transparent and can therefore appear anywhere. Blanks are also
transparent, except insiAe an ascii-string.

comment ::-n "ascii-string"

spec : :- spec ; statementI

statement I
spec ; index-head < ;spec >

index-head < ; spec >

index-head : -lower-string # integer integer

upper-string # integer integer

integer integer

statement :-sys tem-decl

func-decl

set-defn

func-defn

system-deci : process-list)

process-list : -process-list ,process

process I

process-list ,index-head < ,poesls

index-head < process-list >

poes::- func-name [unc-e.xR

func-decl ::- func-nane : func-property

func-property : domain-rangeI

timing-attributeI

reliability-attribute

domain-range ::set-exp -- > set-expI

-- > set-exp

timing-attribute :-comment

reliability-attribute ::- comment

set-defn :: set-name - set-exp

set-exp :uset-exp U set-term

set-term i

set-exp U index-head < U set-exp >

Index-head < U set-exp >

set-term :set-term x set-itemI

set-item I

set-term x index-head < x set-term

index-head < x set-term >

set-item :set-name

(set-exp)
{const-list

set-name :-upper-string -set-name-string

upper-string

set-name-string :: set-name-string - set-syll

set-svll

set-syll ::- upper-string

ineer

const-list :-const-list ,const-name

cons t-name

cOnst-name : ascii-string I

integerI

real-number

func-defn ::- func-namo - func-exp I

tune-name formal-params bifnc-elxp

formal-params :[pRaEmlist I
param-list :- .paa-ls , func-name

* tunc-nameI

param-list , C ~ j rm-ist

func-exp :!- func-nanieI

const-name

funappi VI

C une-l ist)

/ !-pir-list , 'true' : une-exp/

func-appi : une-name [func-exp

60

index-head < func-name > func-exp I
func-list : fune-list , func-exp I

func-exp I

func-list , index-head < , func-list > I
index-head < , func-list >

pred-pair-list ::- pred-pair-list , pred-pair I
pred-pair I

pred-pair-list , index-head < , pred-pair-list >

index-head < , pred-pair-list >

pred-pair ::= func-exp : func-exp

func-name :: lower-string I

lower-string - func-name-string

func-name-string ::- func-syll - func-name-string I

func-syll

func-syll ::- lower-string 1
integer

Primitives of the grammar.

ascii-string :: any string of ASCII characters

upper-string :: any string of upper-case alphabetical characters (note that
iso an operator, and should not be generated as a set-name)

lower-string ::- any string of lower-case alphabetical characters (note that
x is alsoan operator, and should not be generated as a func-name)

integer ::- any string of numerals

real-number ::- any string of numerals with a single embedded poriod

Intrinsic sets.

FILLER f 'null'

BOOLEAN { true', 'false'

INTEGER - the set of all integers representable on the host machine

REAL - the set of all real numbers representable on the host machine

STRING - the set of all string constants with length less Lhan or q ial o
some bound

Typeless intrinsic functions.

x-lower-string I xm-lower-string I xr-lower-string

proj-integer-integer

equal

61

Typed intrinsic functions.

sum: INTEGER x INTEGER --> INTEGER

difference: INTEGER x INTEGER --> INTEGER

product: INTEGER x INTEGER > INTEGER

quotient: INTEGER x INTEGER -- > INTEGER

remainder: INTEGER x INTEGER -- > INTEGER

greater-than: INTEGER x INTEGER -- > BOOLEAN

less-than: INTEGER x INTEGER --> BOOLEAN

greater-than-or-equal: INTEGER x INTEGER --> BOOLEAN

less-than-or-equal: INTEGER x INTEGER -- > BOOLEAN

FOOTNOTES

*Thus "embedded" is almost synonymous with "real-time", but we prefer the

newer term because it does not exclude performance requirements dealing with

reliability.

**Throughout this paper mappings will be called "functions", despite the

fact that mappings named in specifications are often relations. The reason is

that "function" gives a more accurate impression: the intention is always to

produce a unique value when the mapping is invoked in the eventual target

system, even though that value cannot always be determined by a known

functional expression.

***This is actually an inference from the requirements document, which is

by no means clear on this point.

****For interpretable languages, "fixed" and "bounded" always mean the

same thing, because the programmer declares structures sized up to the bound,

and then uses as much of them as needed.

*****More generally, the sequence of evaluations of the function over the

lifetime of the system could be associated with a stochastic process, so that

the time of each evaluation would be a separate random variable, buit let us

hope such generality will never be needed.

FIGURES

(UNDECOMPOSED COMlPLEXITY)

PAR T'".,

ABSTRACT ION

I C J

*" ! I

, <~- -----

* Ii 77'A

* I-

I -- -a S

Figure 1. Three ways to decompose complexity.

TYPE CHARACTERISTICS EXAIMPLES

embedded system special-purpose (application) indiustrial process-
control systenr

absolute performance f~h-tiac
requirements lgtuiac

s ystemn

data-processing special-purpose (application)~ batch business

system relative performance pori
requirements on-line da .ahase

sys tern

support system general-purpose operating syvsteri

relative performance software dev:elopme2nt
requirements tool

Figure 2. A requirements-level system classification.

Figurel-im s.iTeulationste)

ENVIRONMENT PROPOSED SYSTEM

Figure 4. Partial model of a patient-rion it,)rii -w ;~~i

space

t ___ __ __

T.

<3

process state

successor function

Figure 5. Processes in action.

6 6

NOTICE

ACCOUNTN acout

Figure 6. A dataflow diagram for filling orders frm3 an inverntorv.U

DETERMINE MESSAGE TYPE

STORE FACTOR DATA EXMINE FACTORS

SAFE- RANG(E

I :UE R,,4 F

TELL NURSE OF FACTORS

-FAILURTO NURSES STATrO%'

Figure 7. A stimulus-response path (Far, of a pattent-monitrrnr sv-ten')
specified in RSL (from [Al ord 771).

PROPOSED SYSTEM ENVIRONNEFNT

machine-monito t raoreo - ertr

Fiue .Prcsssrutreo hepocs-cnro ys5i

test-element" processos

radio-channel" processes

'radio-to.,; r" processes

(channels time-multiplexedi)

ENVIRONMENT

PROPOSED SYSTEM

Figure 9. The environment of the AFWET system, including resource
requirements.

radio-tower" processes

TIMESTAMPED-MESSAGE

Figure 10. Specification of inc~ming message timestamps in .M4.T7.

delay d +g

a 4F

simulation time

T- f3

Figur 11 h-ieshm fAVT

rel-ieaclo time-sroaR

Figure 12. AFWET processes involved in simulation.

7'i

ENVIRONMENT PROPOSED SYSTE~M

STATE OF ENVIRONMENT activities

events STATE OF SYSTEM,

Figure 13. The conceptual model underlying both process-oriented and
data-oriented approaches.

synchronizing free-running

x
self-

matching X imnpossible

non-
*xm -. 'xr self- xM xr

matching

(a) possible matches (b) derivation of the types
wthin a class

Figure 14. The three types of exchange functions.

72

xm-chan~b] NODE I
NODE 0

x-chan(a] te
17 t ol es s

Saga

2 c xm-chan~c] NODE 2
initiation message (2 ,c)

3 :d

1 ;b

xm-chan[d) NCD F 3

Figure 15. Distributed implementation of exchange matchino.

